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Continued Fractions

Example
Take a = 43, b = 19.

43 = 2 × 19 + 5

19 = 3 × 5 + 4

5 = 1 × 4 + 1

4 = 4 × 1 + 0

Hence, by Euclids algorithm, the gcd of 43 and 19 is 1.
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Continued Fractions

Observe that the quotient at each step of the algorithm has
been highlighted. Using these numbers we can present the
fraction 43

19 in the following manner:

43
19

= 2 + 1
3 + 1

1+ 1
4
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Continued Fractions

Example

225
157

= 1 + 1
2 + 1

3+ 1
4+ 1

5
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Continued Fractions

Its convergents are
1 =

1
1

1 + 1
2
=

3
2

1 + 1
2 + 1

3

=
10
7

1 + 1
2 + 1

3+ 1
4

=
43
30

225
157

= 1 + 1
2 + 1

3+ 1
4+ 1

5
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Continued Fractions

A continued fraction continued fraction is an expression of the
form

a0 + 1

a1 + 1

a2 + 1
a3 + · · · .

We denote the continued fraction displayed above by

[a0, a1, a2, . . .].
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Continued Fractions

For example,
[1, 2] = 1 + 1

2
=

3
2
,

[3, 7, 15, 1, 292] = 3 + 1

7 + 1

15 + 1

1 + 1
292

=
103993
33102

= 3.14159265301190260407 . . . ,
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Continued Fractions

and

[2, 1, 2, 1, 1, 4, 1, 1, 6] = 2 + 1

1 + 1

2 + 1

1 + 1

1 + 1

4 + 1

1 + 1

1 + 1
6

=
1264
465

= 2.7182795698924731182795698 . . .
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Continued Fractions
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2 Infinite Continued Fractions
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Procedur
Convergence of Infinite
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Finite Continued Fractions

Definition (Finite Continued Fraction)
A finite continued fraction is an expression

a0 + 1

a1 + 1

a2 + 1
· · · + 1

an

where each am is a real number and am > 0 for all m ≥ 1.

Chao Qin
Continued Fractions 10 / 49



pic/

Finite Continued Fractions Infinite Continued Fractions

Finite Continued Fractions

Definition (Simple Continued Fraction)
A simple continued fraction is a finite or infinite continued
fraction in which the ai are all integers.
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Finite Continued Fractions

To get a feeling for continued fractions, observe that
[a0] = a0,

[a0, a1] = a0 + 1
a1

=
a0a1 + 1

a1
,

[a0, a1, a2] = a0 + 1

a1 + 1
a2

=
a0a1a2 + a0 + a2

a1a2 + 1
.

Also,

[a0, a1, . . . , an−1, an] =
[
a0, a1, . . . , an−2, an−1 + 1

an

]
= a0 + 1

[a1, . . . , an]
= [a0, [a1, . . . , an]].
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Finite Continued Fractions

Example

[1, 2, 3, 4, 5] = [1, 2, 3, 4, 4, 1]
3
2
= 1 + 1

2
= 1 + 1

1 + 1
1
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Partial Convergent

Definition (Partial Convergents)
For 0 ≤ n ≤ m, the nth convergent of the continued fraction
[a0, . . . , am] is [a0, . . . , an]. These convergents for n < m are also
called partial convergents.
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Partial Convergent

Proposition (Partial Convergents)
If pn and qn are defined by

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 for n ≤ 2

q0 = 1, q1 = a1, qn = anqn−1 + qn−2 for n ≤ 2

we have
[a0, . . . , an] =

pn

qn
.
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Partial Convergent

Proof.
We use induction. The assertion is obvious when n = 0, 1.
Suppose the proposition is true for all continued fractions of
length n − 1. □
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Partial Convergent

Proof.

[a0, . . . , an] = [a0, . . . , an−2, an−1 + 1
an

]

=

(
an−1 + 1

an

)
pn−2 + pn−3(

an−1 + 1
an

)
qn−2 + qn−3

=
(an−1an + 1)pn−2 + anpn−3
(an−1an + 1)qn−2 + anqn−3

=
an (an−1pn−2 + pn−3) + pn−2
an (an−1qn−2 + qn−3) + qn−2

=
anpn−1 + pn−2
anqn−1 + qn−2

=
pn

qn
.

□
Chao Qin
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Partial Convergent

Proposition
For n ≥ 0 with n ≤ m we have

pnqn−1 − qnpn−1 = (−1)n−1

and

pnqn−2 − qnpn−2 = (−1)nan.

Equivalently,
pn

qn
− pn−1

qn−1
= (−1)n−1 · 1

qnqn−1

and pn

qn
− pn−2

qn−2
= (−1)n · an

qnqn−2
.

Chao Qin
Continued Fractions 19 / 49



pic/

Finite Continued Fractions Infinite Continued Fractions

Partial Convergent

Proof.
The case for n = 0 is obvious from the definitions. Now suppose
n > 0 and the statement is true for n − 1. Then

pnqn−1 − qnpn−1 = (anpn−1 + pn−2)qn−1 − (anqn−1 + qn−2)pn−1

= pn−2qn−1 − qn−2pn−1

= −(pn−1qn−2 − pn−2qn−1)
= −(−1)n−2 = (−1)n−1.

This completes the proof of Simple Continued Fraction. □
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Partial Convergent

Theorem
If [a0, a1, . . . , am] is a simple continued fraction, so each ai is an
integer, then the pn and qn are integers and the fraction pn/qn is
in lowest terms.

Proof.
It is clear that the pn and qn are integers, from the formula that
defines them. If d is a positive divisor of both pn and qn, then
d | (−1)n−1, so d = 1. □
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The Sequence of Partial Convergents

Let [a0, · · · , an] be a continued fraction and for n ≤ m we write

cn = [a0, · · · , an] =
pn

qn

as the nth convergent.

Proposition (How Convergents Converge)
The even indexed convergents c2n increase strictly with n, and
the odd indexed convergents c2n+1 decrease strictly with n. Also,
the odd indexed convergents c2n+1 are greater than all of the even
indexed convergents c2m.
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The Sequence of Partial Convergents
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The Sequence of Partial Convergents

Proof.
The an are positive for n ≥ 1, so the qn are positive. By
proposition, for n ≥ 2,

cn − cn−2 = (−1)n · an

qnqn−2
,

which proves the first claim. □
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The Sequence of Partial Convergents

Proof.
Suppose for the sake of contradiction that there exist integers r
and m such that c2m+1 < c2r . From the previous proposition
implies implies that for n ≥ 1,

cn − cn−1 = (−1)n−1 · 1
qnqn−1

has sign (−1)n−1, so for all s ≥ 0 we have c2s+1 > c2s. Thus it is
impossible that r = m. If r < m, then by what we proved in the
first paragraph, c2m+1 < c2r < c2m, a contradiction (with s = m).
If r > m, then c2r+1 < c2m+1 < c2r , which is also a contradiction
(with s = r ).

□
Chao Qin
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Every Rational Number is Represented

Proposition (Rational Continued Fractions)
Every nonzero rational number can be represented by a simple
continued fraction.
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Every Rational Number is Represented

Proof.
Without loss of generality, we may assume that the rational
number is a/b, with b ≥ 1 and gcd(a, b) = 1.

a = b · a0 + r1, 0 < r1 < b
b = r1 · a1 + r2, 0 < r2 < r1

· · ·
rn−2 = rn−1 · an−1 + rn, 0 < rn < rn−1

rn−1 = rn · an + 0.

□

Chao Qin
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Every Rational Number is Represented

Proof.
Note that ai > 0 for i > 0 (also rn = 1, since gcd(a, b) = 1).
Rewrite the equations as follows:

a/b = a0 + r1/b = a0 + 1/(b/r1),
b/r1 = a1 + r2/r1 = a1 + 1/(r1/r2),
r1/r2 = a2 + r3/r2 = a2 + 1/(r2/r3),
· · ·

rn−1/rn = an.

It follows that a
b

= [a0, a1, . . . , an].

□
Chao Qin
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The Continued Fraction Procedur

Let x ∈ R and write
x = a0 + t0

with a0 ∈ Z and 0 ≤ t0 < 1. We call the number a0 the floor of x ,
and we also sometimes write a0 = ⌊x⌋. If t0 ≠ 0, write

1
t0

= a1 + t1

Chao Qin
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The Continued Fraction Procedur

with a1 ∈ N and 0 ≤ t1 < 1. Thus t0 = 1
a1+t1

= [0, a1 + t1], which is
a continued fraction expansion of t0, which need not be simple.
Continue in this manner so long as tn ≠ 0 writing

1
tn

= an+1 + tn+1

with an+1 ∈ N and 0 ≤ tn+1 < 1. We call this procedure, which
associates to a real number x the sequence of integers
a0, a1, a2, . . ., the continued fraction process.
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The Continued Fraction Procedur

Example
Let x = 8

3 . Then x = 2 + 2
3 , so a0 = 2 and t0 = 2

3 . Then
1
t0
= 3

2 = 1 + 1
2 , so a1 = 1 and t1 = 1

2 . Then 1
t1
= 2, so a2 = 2, t2 = 0,

and the sequence terminates. Notice that

8
3
= [2, 1, 2],

so the continued fraction procedure produces the continued
fraction of 8

3 .
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The Continued Fraction Procedur

Example
Let x = 1+

√
5

2 . Then

x = 1 + −1 +
√

5
2

,

so a0 = 1 and t0 = −1+
√

5
2 . We have

1
t0

=
2

−1 +
√

5
=
−2 − 2

√
5

−4
=

1 +
√

5
2

,

Chao Qin
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The Continued Fraction Procedur

so a1 = 1 and t1 = −1+
√

5
2 . Likewise, an = 1 for all n. As we will

see below, the following exciting equality makes sense.

1 +
√

5
2

= 1 + 1

1 + 1

1 + 1

1 + 1

1 + 1
1 + · · ·
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The Continued Fraction Procedur

Example
Suppose x = e = 2.71828182 . . .. Using the continued fraction
procedure, we find that

a0, a1, a2, . . . = 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .

Chao Qin
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The Continued Fraction Procedur

For example, a0 = 2 is the floor of 2. Subtracting 2 and inverting,
we obtain 1/0.718 . . . = 1.3922 . . ., so a1 = 1. Subtracting 1 and
inverting yields 1/0.3922 . . . = 2.5496 . . ., so a2 = 2.
The 5th partial convergent of the continued fraction of e is

[a0, a1, a2, a3, a4, a5] =
87
32

= 2.71875,

which is a good rational approximation to e, in the sense that����87
32

− e
���� = 0.000468 . . . .

Note that 0.000468 . . . < 1/322 = 0.000976 . . ., which illustrates
the bound in Theorem.
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The Continued Fraction Procedur

Let’s do the same thing with 𝜋 = 3.14159265358979 . . ..
Applying the continued fraction procedure, we find that the
continued fraction of 𝜋 is

a0, a1, a2, . . . = 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .

The first few partial convergents are

3,
22
7

,
333
106

,
355
113

,
103993
33102

, · · ·

These are good rational approximations to 𝜋; for example,

103993
33102

= 3.14159265301 . . . .
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Convergence of Infinite Continued Fract

Lemma
For every n such that an is defined, we have

x = [a0, a1, . . . , an + tn],

and if tn ≠ 0, then x = [a0, a1, . . . , an,
1
tn ].
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Convergence of Infinite Continued Fract

Proof.
We use induction. The statements are both true when n = 0. If
the second statement is true for n − 1, then

x =

[
a0, a1, . . . , an−1,

1
tn−1

]
= [a0, a1, . . . , an−1, an + tn]

=

[
a0, a1, . . . , an−1, an,

1
tn

]
.

Similarly, the first statement is true for n if it is true for
n − 1. □
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Convergence of Infinite Continued Fract

Theorem (Continued Fraction Limit)
Let a0, a1, . . . be a sequence of integers such that an > 0 for all
n ≥ 1, and for each n ≥ 0, set cn = [a0, a1, . . . an]. Then lim

n→∞
cn

exists.

Chao Qin
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Convergence of Infinite Continued Fract

Proof.
For any m ≥ n, the number cn is a partial convergent of
[a0, . . . , am]. The even convergents c2n form a strictly increasing
sequence and the odd convergents c2n+1 form a strictly
decreasing sequence. Moreover, the even convergents are all
≤ c1 and the odd convergents are all ≥ c0. Hence
𝛼0 = limn→∞ c2n and 𝛼1 = limn→∞ c2n+1 both exist, and 𝛼0 ≤ 𝛼1.

|c2n − c2n−1 | =
1

q2n · q2n−1
≤ 1

2n(2n − 1) → 0,

so 𝛼0 = 𝛼1. □

Chao Qin
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Convergence of Infinite Continued Fract

We define
[a0, a1, . . .] = lim

n→∞
cn.

Example
We illustrate the theorem with x = 𝜋.
Let cn be the nth partial convergent to 𝜋. The cn with n odd
converge down to 𝜋

c1 = 3.1428571 . . . , c3 = 3.1415929 . . . , c5 = 3.1415926 . . .

whereas the cn with n even converge up to 𝜋

c2 = 3.1415094 . . . , c4 = 3.1415926 . . . , c6 = 3.1415926 . . . .
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Convergence of Infinite Continued Fract

Theorem
Let a0, a1, a2, . . . be a sequence of real numbers such that an > 0
for all n ≥ 1, and for each n ≥ 0, set cn = [a0, a1, . . . an]. Then
lim

n→∞
cn exists if and only if the sum ∑∞

n=0 an diverges.
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Convergence of Infinite Continued Fract

Example
Let an = 1

n log(n) for n ≥ 2 and a0 = a1 = 0. By the integral test,∑
an diverges, the continued fraction [a0, a1, a2, . . .] converges.

This convergence is very slow, since, e.g.

[a0, a1, . . . , a9999] = 0.5750039671012225425930 . . .

yet

[a0, a1, . . . , a10000] = 0.7169153932917378550424 . . . .

Chao Qin
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Convergence of Infinite Continued Fract

Theorem
Let x ∈ R be a real number. Then x is the value of the (possibly
infinite) simple continued fraction [a0, a1, a2, . . .] produced by
the continued fraction procedure.
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Convergence of Infinite Continued Fract

Theorem (Convergence of continued fraction)
Let a0, a1, . . . define a simple continued fraction, and let
x = [a0, a1, . . .] ∈ R be its value. Then for all m,����x − pm

qm

���� < 1
qm · qm+1

.
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