Number theory and Cryptography

School of Mathematical Sciences

May 16th, 2024

Definition (Primitive Root)

A primitive root modulo an integer n is an element of $(\mathbf{Z}/n\mathbf{Z})^*$ of order $\varphi(n)$.

Proposition

Let p be a prime number and let d be a divisor of p-1. Then $f = x^d - 1 \in (\mathbf{Z}/p\mathbf{Z})[x]$ has exactly d roots in $\mathbf{Z}/p\mathbf{Z}$.

Proof.

Let e = (p-1)/d. We have

$$x^{p-1} - 1 = (x^d)^e - 1$$

= $(x^d - 1)((x^d)^{e-1} + (x^d)^{e-2} + \dots + 1)$
= $(x^d - 1)g(x)$,

where $g \in (\mathbf{Z}/p\mathbf{Z})[x]$ and $\deg(g) = de - d = p - 1 - d$. Fetmat's Little Theorem implies that $x^{p-1} - 1$ has exactly p - 1 roots in $\mathbf{Z}/p\mathbf{Z}$, since every nonzero element of $\mathbf{Z}/p\mathbf{Z}$ is a root! Since g has at most p - 1 - d roots and $x^d - 1$ has at most d roots. Since a root of $(x^d - 1)g(x)$ is a root of either $x^d - 1$ or g(x) and $x^{p-1} - 1$ has p - 1 roots, g must have exactly p - 1 - d roots and $x^d - 1$ must have exactly d roots, as claimed.

Lemma

Suppose $a, b \in (\mathbf{Z}/n\mathbf{Z})^*$ have orders r and s, respectively, and that gcd(r, s) = 1. Then ab has order rs.

Theorem (Primitive Roots)

There is a primitive root modulo any prime p. In particular, the group $(\mathbf{Z}/p\mathbf{Z})^*$ is cyclic.

Example

We illustrate the proof of the Primitive Roots Theorem when p = 13. We have

$$p-1=12=2^2\cdot 3$$
.

The polynomial $x^4 - 1$ has roots $\{1, 5, 8, 12\}$ and $x^2 - 1$ has roots $\{1, 12\}$, so we may take $a_1 = 5$. The polynomial $x^3 - 1$ has roots $\{1, 3, 9\}$, and we set $a_2 = 3$. Then $a = 5 \cdot 3 = 15 \equiv 2$ is a primitive root. To verify this, note that the successive powers of 2 (mod 13) are

2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1.

Example

Primitive Roots Theorem is false if, for example, p is replaced by a power of 2 bigger than 4. For example, the four elements of $(\mathbf{Z}/8\mathbf{Z})^*$ each have order dividing 2, but $\varphi(8) = 4$.

Example

Primitive Roots Theorem is false if, for example, p is replaced by a power of 2 bigger than 4. For example, the four elements of $(\mathbf{Z}/8\mathbf{Z})^*$ each have order dividing 2, but $\varphi(8) = 4$.

Theorem (Primitive Roots mod p^n)

Let p^n be a power of an odd prime. Then there is a primitive root modulo p^n .

Proposition (Number of Primitive Roots)

If there is a primitive root modulo n, then there are exactly $\varphi(\varphi(n))$ primitive roots modulo n.

Proposition (Number of Primitive Roots)

If there is a primitive root modulo n, then there are exactly $\varphi(\varphi(n))$ primitive roots modulo n.

Proof.

The primitive roots modulo n are the generators of $(\mathbf{Z}/n\mathbf{Z})^*$, which by assumption is cyclic of order $\varphi(n)$. Thus they are in bijection with the generators of any cyclic group of order $\varphi(n)$. In particular, the number of primitive roots modulo n is the same as the number of elements of $\mathbf{Z}/\varphi(n)\mathbf{Z}$ with additive order $\varphi(n)$. An element of $\mathbf{Z}/\varphi(n)\mathbf{Z}$ has additive order $\varphi(n)$ if and only if it is coprime to $\varphi(n)$. There are $\varphi(\varphi(n))$ such elements, as claimed.

Example

For example, there are $\varphi(\varphi(17)) = \varphi(16) = 2^4 - 2^3 = 8$ primitive roots mod 17, namely 3, 5, 6, 7, 10, 11, 12, 14. The $\varphi(\varphi(9)) = \varphi(6) = 2$ primitive roots modulo 9 are 2 and 5. There are no primitive roots modulo 8, even though $\varphi(\varphi(8)) = \varphi(4) = 2 > 0$.