Number theory and Cryptography

School of Mathematical Sciences

May 14th, 2024

Theorem (Chinese Remainder Theorem)

Let $a, b \in \mathbf{Z}$ and $n, m \in \mathbf{N}$ such that gcd(n, m) = 1. Then there exists $x \in \mathbf{Z}$ such that

$$x \equiv a \pmod{m}$$
,

$$x \equiv b \pmod{n}$$
.

Moreover x is unique modulo mn.

Proof.

If we can solve for *t* in the equation

$$a + tm \equiv b \pmod{n}$$
,

then x = a + tm will satisfy both congruences. To see that we can solve, subtract a from both sides and use the Proposition of Unit together with our assumption that gcd(n, m) = 1 to see that there is a solution.

For uniqueness, suppose that x and y solve both congruences. Then z = x - y satisfies $z \equiv 0 \pmod{m}$ and $z \equiv 0 \pmod{n}$, so $m \mid z$ and $n \mid z$. Since gcd(n, m) = 1, it follows that $nm \mid z$, so $x \equiv y \pmod{nm}$.

Lemma

Suppose that $m, n \in \mathbb{N}$ and gcd(m, n) = 1. Then the map

$$\psi: (\mathbf{Z}/mn\mathbf{Z})^* \to (\mathbf{Z}/m\mathbf{Z})^* \times (\mathbf{Z}/n\mathbf{Z})^*.$$
 (1)

defined by

$$\psi(c) = (c \mod m, c \mod n)$$

is a bijection.

Definition (Multiplicative Function)

A function $f : \mathbf{N} \to \mathbf{C}$ is *multiplicative* if, whenever $m, n \in \mathbf{N}$ and gcd(m, n) = 1, we have

$$f(mn) = f(m) \cdot f(n)$$
.

Proposition (Multiplicativity of φ)

The function φ is multiplicative.

Proposition (Multiplicativity of φ)

The function φ is multiplicative.

Proof.

The map ψ of Lemma 2 is a bijection, so the set on the left in (1) has the same size as the product set on the right in (1). Thus

$$\varphi(mn) = \varphi(m) \cdot \varphi(n).$$

Proposition (Extended Euclidean Representation)

Suppose $a, b \in \mathbf{Z}$ and let $g = \gcd(a, b)$. Then there exists $x, y \in \mathbf{Z}$ such that

$$ax + by = g$$
.

Proposition (Extended Euclidean Representation)

Suppose $a, b \in \mathbf{Z}$ and let $g = \gcd(a, b)$. Then there exists $x, y \in \mathbf{Z}$ such that

$$ax + by = g$$
.

Proof.

Let $g = \gcd(a, b)$. Then $\gcd(a/g, b/g) = 1$, so by the Solvability Proposition, the equation

$$\frac{a}{g} \cdot x \equiv 1 \left(\text{mod } \frac{b}{g} \right) \tag{2}$$

has a solution $x \in \mathbf{Z}$. Multiplying (2) through by g yields $ax \equiv g$ (mod b), so there exists y such that $b \cdot (-y) = ax - g$. Then $ax + by \neq g$, as required.

Example

Suppose a = 5 and b = 7. Here we underline certain numbers, because it clarifies the subsequent back substitution we will use to find x and y.

$$7 = 1 \cdot \underline{5} + \underline{2} \qquad \text{so } \underline{2} = \underline{7} - \underline{5}$$

$$\underline{5} = 2 \cdot \underline{2} + \underline{1} \qquad \text{so } \underline{1} = \underline{5} - 2 \cdot \underline{2} = \underline{5} - 2(\underline{7} - \underline{5}) = 3 \cdot \underline{5} - 2 \cdot \underline{7}$$

On the right, we have back-substituted in order to write each partial remainder as a linear combination of a and b. In the last step, we obtain gcd(a, b) as a linear combination of a and b, as desired.

Example

That example was not too complicated, so we try another one. Let a = 130 and b = 61. We have

$$\begin{array}{lll}
 & \underline{130} = 2 \cdot \underline{61} + \underline{8} & \underline{8} = \underline{130} - 2 \cdot \underline{61} \\
 & \underline{61} = 7 \cdot \underline{8} + \underline{5} & \underline{5} = -7 \cdot \underline{130} + 15 \cdot \underline{61} \\
 & \underline{8} = 1 \cdot \underline{5} + \underline{3} & \underline{3} = 8 \cdot \underline{130} - 17 \cdot \underline{61} \\
 & \underline{5} = 1 \cdot \underline{3} + \underline{2} & \underline{2} = -15 \cdot \underline{130} + 32 \cdot \underline{61} \\
 & \underline{3} = 1 \cdot 2 + 1 & \underline{1} = 23 \cdot 130 - 49 \cdot \underline{61}
 \end{array}$$

Thus x = 23 and y = -49 is a solution to 130x + 61y = 1.

Example

Solve $17x \equiv 1 \pmod{61}$. First, we use the Euclid Algorithm to find x, y such that 17x + 61y = 1:

$$\begin{array}{ll} \underline{61} = 3 \cdot \underline{17} + \underline{10} & \underline{10} = \underline{61} - 3 \cdot \underline{17} \\ \underline{17} = 1 \cdot \underline{10} + \underline{7} & \underline{7} = -\underline{61} + 4 \cdot \underline{17} \\ \underline{10} = 1 \cdot \underline{7} + \underline{3} & \underline{3} = 2 \cdot \underline{61} - 7 \cdot \underline{17} \\ 3 = 2 \cdot 3 + 1 & 1 = -5 \cdot 61 + 18 \cdot \underline{17} \end{array}$$

Thus $17 \cdot 18 + 61 \cdot (-5) = 1$ so x = 18 is a solution to $17x \equiv 1 \pmod{61}$.

Theorem (Pseudoprimality)

An integer p > 1 is prime if and only if for every $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Theorem (Pseudoprimality)

An integer p > 1 is prime if and only if for every $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof.

If p is prime, then the statement follows from Fermat's Little Theorem. If p is composite, then there is a divisor a of p with $2 \le a < p$. If $a^{p-1} \equiv 1 \pmod{p}$, then $p \mid a^{p-1} - 1$. Since $a \mid p$, we have $a \mid a^{p-1} - 1$, hence there exists an integer k such that $ak = a^{p-1} - 1$. Subtracting, we see that $a^{p-1} - ak = 1$, so $a(a^{p-2} - k) = 1$. This implies that $a \mid 1$, which is a contradiction since $a \ge 2$.

Example

Is p = 323 prime? We compute $2^{322} \pmod{323}$. Making a table as above, we have

i	m	ε_i	2 ²ⁱ mod 323
0	322	0	2
1	161	1	4
2	80	0	16
3	40	0	256
4	20	0	290
5	10	0	120
6	5	1	188
7	2	0	137
8	1	1	35

Example

Thus

$$2^{322} \equiv 4 \cdot 188 \cdot 35 \equiv 157 \pmod{323}$$
,

so 323 is not prime, though this computation gives no information about how 323 factors as a product of primes. In fact, one finds that $323 = 17 \cdot 19$.