The Ring of Integers Modulo *n*

School of Mathematical Sciences

May 9th, 2024

Definition (Group)

A *group* is a set G equipped with a binary operation $G \times G \to G$ (denoted by multiplication below) and an identity element $1 \in G$ such that:

- **1** For all $a, b, c \in G$, we have (ab)c = a(bc).
- **2** For each $a \in G$, we have 1a = a1 = a, and there exists $b \in G$ such that ab = 1.

Definition (Group)

A *group* is a set G equipped with a binary operation $G \times G \to G$ (denoted by multiplication below) and an identity element $1 \in G$ such that:

- 1 For all $a, b, c \in G$, we have (ab)c = a(bc).
- **2** For each $a \in G$, we have 1a = a1 = a, and there exists $b \in G$ such that ab = 1.

Definition (Abelian Group)

An abelian group is a group G such that ab = ba for every $a, b \in G$.

Definition (Ring)

A *ring* R is a set equipped with binary operations + and × and elements $0, 1 \in R$ such that R is an abelian group under +, and for all $a, b, c \in R$ we have

- 1a = a1 = a
- $\bullet (ab)c = a(bc)$
- \triangleright a(b+c) = ab + ac.

If, in addition, ab = ba for all $a, b \in R$, then we call R a commutative ring.

Definition (Integers Modulo *n*)

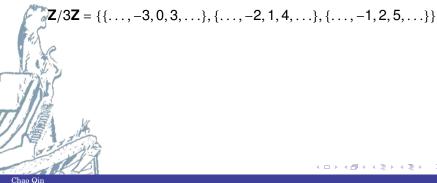
The ring n of integers modulo n is the set of equivalence classes of integers modulo n. It is equipped with its natural ring structure:

$$(a + nZ) + (b + nZ) = (a + b) + nZ$$

$$(a + nZ) \cdot (b + nZ) = (a \cdot b) + nZ.$$

Example

For example,



Example

For example,

$$\mathbf{Z}/3\mathbf{Z} = \{\{\ldots, -3, 0, 3, \ldots\}, \{\ldots, -2, 1, 4, \ldots\}, \{\ldots, -1, 2, 5, \ldots\}\}$$

Definition (Field)

A *field* K is a ring such that for every nonzero element $a \in K$ there is an element $b \in K$ such that ab = 1.

Example

For example,

$$\mathbf{Z}/3\mathbf{Z} = \{\{\ldots, -3, 0, 3, \ldots\}, \{\ldots, -2, 1, 4, \ldots\}, \{\ldots, -1, 2, 5, \ldots\}\}$$

Definition (Field)

A *field* K is a ring such that for every nonzero element $a \in K$ there is an element $b \in K$ such that ab = 1.

For example, if p is a prime, then $\mathbf{Z}/p\mathbf{Z}$ is a field

Definition (Reduction Map and Lift)

We call the natural reduction map $\mathbf{Z} \to n\mathbf{Z}$, which sends a to $a+n\mathbf{Z}$, reduction modulo n. We also say that a is a *lift* of $a+n\mathbf{Z}$. Thus, e.g., 7 is a lift of 1 mod 3, since $7+3\mathbf{Z}=1+3\mathbf{Z}$.

We can use that arithmetic in n is well defined to derive tests for divisibility by n.

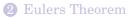
Definition (Reduction Map and Lift)

We call the natural reduction map $\mathbf{Z} \to n\mathbf{Z}$, which sends a to $a+n\mathbf{Z}$, reduction modulo n. We also say that a is a *lift* of $a+n\mathbf{Z}$. Thus, e.g., 7 is a lift of 1 mod 3, since $7+3\mathbf{Z}=1+3\mathbf{Z}$.

We can use that arithmetic in n is well defined to derive tests for divisibility by n.

Theorem

A number $n \in \mathbf{Z}$ is divisible by 3 if and only if the sum of the digits of n is divisible by 3.



Theorem (Cancellation)

If
$$gcd(c, n) = 1$$
 and

$$ac \equiv bc \pmod{n}$$
,

then $a \equiv b \pmod{n}$.

Theorem (Cancellation)

If
$$gcd(c, n) = 1$$
 and

$$ac \equiv bc \pmod{n}$$
,

then $a \equiv b \pmod{n}$.

Proof.

By definition

$$n \mid ac - bc = (a - b)c$$
.

Since gcd(n, c) = 1, it follows from FTA that $n \mid a - b$, so

$$a \equiv b \pmod{n}$$
,

as claimed.

<u>Definition</u> (Complete Set of Residues)

We call a subset $R \subset \mathbf{Z}$ of size n whose reductions modulo n are pairwise distinct a complete set of residues modulo n. In other words, a complete set of residues is a choice of representative for each equivalence class in $\mathbf{Z}/n\mathbf{Z}$.

Definition (Complete Set of Residues)

We call a subset $R \subset \mathbf{Z}$ of size n whose reductions modulo n are pairwise distinct a complete set of residues modulo n. In other words, a complete set of residues is a choice of representative for each equivalence class in $\mathbf{Z}/n\mathbf{Z}$.

Lemma

If R is a complete set of residues modulo n and $a \in \mathbf{Z}$ with gcd(a, n) = 1, then $aR = \{ax : x \in R\}$ is also a complete set of residues modulo n.

Eulers Theorem Wilsons Theorem

Linear Equations Modulo n

Theorem (Units)

If gcd(a, n) = 1, then the equation $ax \equiv b \pmod{n}$ has a solution, and that solution is unique modulo n.

Theorem (Units)

If gcd(a, n) = 1, then the equation $ax \equiv b \pmod{n}$ has a solution, and that solution is unique modulo n.

Proof.

Let R be a complete set of residues modulo n, so there is a unique element of R that is congruent to b modulo n. By the previous Lemma, aR is also a complete set of residues modulo n, so there is a unique element $ax \in aR$ that is congruent to b modulo n, and we have $ax \equiv b \pmod{n}$.

Theorem (Solvability)

The equation $ax \equiv b \pmod{n}$ has a solution if and only if gcd(a, n) divides b.

Definition (Order of an Element)

Let $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ and suppose that gcd(x, n) = 1. The *order* of x modulo n is the smallest $m \in \mathbb{N}$ such that

$$x^m \equiv 1 \pmod{n}$$
.

Definition (Euler's φ -function)

For $n \in \mathbb{N}$, let

$$\varphi(n) = \#\{a \in N : a \le n \text{ and } \gcd(a, n) = 1\}.$$

Definition (Euler's φ -function)

For $n \in \mathbb{N}$, let

$$\varphi(n) = \#\{a \in \mathbb{N} : a \le n \text{ and } \gcd(a, n) = 1\}.$$

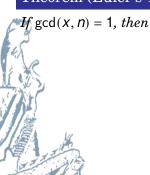
$$\varphi(1) = \#\{1\} = 1,$$

$$\varphi(2) = \#\{1\} = 1,$$

$$\varphi(5) = \#\{1, 2, 3, 4\} = 4,$$

$$\varphi(12) = \#\{1, 5, 7, 11\} = 4.$$

Theorem (Euler's Theorem)



$$x^{\varphi(n)} \equiv 1 \pmod{n}$$
.

- **Eulers Theorem**

Theorem

An integer p > 1 is prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

Theorem

An integer p > 1 is prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

For example, if p = 3, then $(p - 1)! = 2 \equiv -1 \pmod{3}$.

Theorem

An integer p > 1 is prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

For example, if p = 3, then $(p - 1)! = 2 \equiv -1 \pmod{3}$. If p = 17, then

$$(p-1)! = 20922789888000 \equiv -1 \pmod{17}$$
.

Theorem

An integer p > 1 is prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

For example, if p = 3, then $(p-1)! = 2 \equiv -1 \pmod{3}$. If p = 17, then

$$(p-1)! = 20922789888000 \equiv -1 \pmod{17}$$
.

But if p = 15, then

$$(p-1)! = 87178291200 \equiv 0 \pmod{15},$$

so 15 is composite. Thus Wilson's theorem could be viewed as a primality test, though, from a computational point of view, it is probably one of the world's least efficient primality tests since computing (n-1)! takes so many steps.