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Definition (Quadratic Irrational)

A quadratic irrational is a real number a € R that is irrational
and satisfies a quadratic polynomial with coefficients in Q.

oThus, for example, (1 +V5)/2 is a quadratic irrational. Recall
" that
WA 1+2‘/5=[1,1,1,...].

¥,

——

Y N
,hé continued fraction of V2 is [1,2,2,2,2,2,...], and the
/ ntlnued fraction of V389 is

7/”’ = % 7:,{%19,1,2,1,1,1,1,2,1,38,1,2,1,1,1,1,2,1,38,...].
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Periodic Continued Fractions

Definition (Periodic Continued Fraction)

A periodic continued fraction is a continued fraction
("lay, ai,...,an,...] such that

an = an+h

ér}Some fixed positive integer h and all sufficiently large n. We
: 11 the minimal such h the period of the continued fraction.
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Periodic Continued Fractions

Example

Consider the periodic continued fraction [1,2,1,2,...] =[1,2].
What does it converge to? We have

=
X

oS 1,2]=1+ 1

2+
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Periodic Continued Fractions

soif a = [1,2] then

Pk 2+ —
-t a a

A
/

*ghus 202 -2a-1=0,s0
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Continued Fractions of Algebraic Numbers of Higher Degree

i Definition (Algebraic Number)

An algebraic number is a root of a polynomial f € Q[x].
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Recognizing Rational Number

Suppose that somehow you can compute approximations to
some rational number, and want to figure what the rational
number probably is. Computing the approximation to high
enough precision to find a period in the decimal expansion is not
(¥a good approach, because the period can be huge (see below). A
“much better approach is to compute the simple continued
“fraction of the approximation, and truncate it before a large
ipartlal quotient a,, then compute the value of the truncated
- ”f , @ﬁtmued fraction. This results in a rational number that has a
j J’I‘elatlvely small numerator and denominator, and is close to the
7;7 approx1mat10n of the rational number, since the tail end of the
g /:»‘ contlnued fraction is at most 1/ap.
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Recognizing Rational Number

We begin with a contrived example, which illustrates how to
recognize a rational number. Let

(% =9495/3847 = 2.4681570054587990642058747075643358461138!

é 'E[J‘he continued fraction of the truncation
@4681 57005458799064 is

,__Lﬁ

//)m 2,2,7,2,1,5,1,1,1,1,1,1,328210621945,2,1,1,1,.. ]
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Recognizing Rational Number

We have
9495

3847
("Notice that no repetition is evident in the digits of x given
above though we know that the decimal expansion of X must be
\evgntually periodic, since all decimal expansions of rational

ne ‘I;umbers are eventually periodic. In fact, the length of the

/ e 1od of the decimal expansion of 1/3847 is 3846, which is the
ﬁ :der of 10 modulo 3847

/;t%

[2,2,7,2,1,5,1,1,1,1,1,1] =
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Recognizing Rational Number

For example, suppose f = 3847x2 — 14808904 x + 36527265. To
apply Newton’s method, let Xy be a guess for a root of f. Iterate
using the recurrence

f(x
Xn+1 = Xn — (Xn)

/
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Recognizing Rational Number

The continued fraction of the approximations x; and X, are

[2,2,6,1,47,2,1,4,3,1,5,8,2,3]

',:&a\nd
Nl [2,2,7,2,1,5,1,1,1,1,1,1,103,8,1,2,3, .. .].
#
I ’Eruncatlng the continued fraction of xo before 103 gives
iy /
K 4

,f,‘ (2,2,7,2,1,5,1,1,1,1,1,1],

/f / whilch gvaluates to 9495/3847, which is a rational root of f.

&

u]
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Sums of Two Squares

. =

" A positive integer N is a sum of two squares if and only if all
2 prime factors of p | N such that p =3 (mod 4) have even exponent
tin’f’ the prime factorization of n.

‘,I Yy
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We first consider some examples. Notice that 5= 12+2%is a

L sum of two squares, but 7 is not a sum of two squares. Since
(2001 is divisible by 3 (because 2 + 1 is divisible by 3), but not by
g (since 2 + 1 is not), Theorem implies that 2001 is not a sum of
t,;(\fo squares. The theorem also implies that 2-3%.5.72.13is a

— IR gl of two squares.
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Ja Definition (Primitive)

2 {'S representation n = x2 + y? is primitive if X and y are coprime.
\ >

Chao Qin

Sums of Two Squares,Sum of Four Sq



Sums of Two Squares

0000@00000

Sums of Two Squares

P Lemma

l]y”n is divisible by a prime p =3 (mod 4), then n has no
K brzmitive representations.
Y
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Suppose n has a primitive representation, n = x2 + y2, and let p
Lwbe any prime factor of n. Then

o plx?+y? and gcd(x,y)=1,

; X
— s ‘§'b‘ t x and p 1 y. Since Z/pZ is a field, we may divide by y? in
o lie equation x2+y2 =0 (mod p) to see that (x/y)% = -1
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Thus the Legendre symbol (‘—p1) equals +1. However, by
Proposition,

e -1
- o — | =(-1 (p-1)/2
[7)-

; @bﬂ(%) =1 if and only if (p - 1)/2 is even, which is to say p = 1
16d 4).
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Lemma

. .oa.
Af x e Rand n € N, then there is a fraction — in lowest terms

" stich that 0 < b < nand
Z

b

a‘ 1

)X_B =bn+1)
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Consider the continued fraction [&g, a1, .. .] of x. for each m

Pm 1

X - ‘ PR N
Am|  A9m - Am+1

§mce Qm+1 = gm+ 1 and g = 1, either there exists an m such
M ‘pha Qm < N < Qms1, or the contlnued fraction expansion of X is
/ ﬁhlte and nis larger than the denominator of the rational

mumber X, in which case we take = X and are done. In the first
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ok X — p_m < 1 < 1 ,
" 4 Om|  Qm-Qma ~ Gm- (n+1)

P

I satisfies the conclusion of the lemma.
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