
Number theory and Cryptography June 4, 2024

Lecture 9 : Continued Fractions
Instructor: Chao Qin Notes written by: Wenhao Tong and Yingshu Wang

A continued fraction continued fraction is an expression of the form

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

𝑎3 + · · · .

We denote the continued fraction displayed above by

[𝑎0, 𝑎1, 𝑎2, . . .].

For example,
[1, 2] = 1 + 1

2 =
3
2 ,

[3, 7, 15, 1, 292] = 3 + 1

7 + 1

15 + 1

1 + 1
292

=
103993
33102 = 3.14159265301190260407 . . . ,
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and

[2, 1, 2, 1, 1, 4, 1, 1, 6] = 2 + 1

1 + 1

2 + 1

1 + 1

1 + 1

4 + 1

1 + 1

1 + 1
6

=
1264
465

= 2.7182795698924731182795698 . . .

1 Finite Continued Fractions
Definition (Finite Continued Fraction). A finite continued fraction is an
expression

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

· · · + 1
𝑎𝑛

where each 𝑎𝑚 is a real number and 𝑎𝑚 > 0 for all 𝑚 ≥ 1.

Definition (Simple Continued Fraction). A simple continued fraction is a
finite or infinite continued fraction in which the 𝑎𝑖 are all integers.

To get a feeling for continued fractions, observe that

[𝑎0] = 𝑎0,

[𝑎0, 𝑎1] = 𝑎0 +
1
𝑎1

=
𝑎0𝑎1 + 1

𝑎1
,

[𝑎0, 𝑎1, 𝑎2] = 𝑎0 +
1

𝑎1 +
1
𝑎2

=
𝑎0𝑎1𝑎2 + 𝑎0 + 𝑎2

𝑎1𝑎2 + 1 .
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Also,

[𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛] =
[
𝑎0, 𝑎1, . . . , 𝑎𝑛−2, 𝑎𝑛−1 +

1
𝑎𝑛

]
= 𝑎0 +

1
[𝑎1, . . . , 𝑎𝑛]

= [𝑎0, [𝑎1, . . . , 𝑎𝑛]].

1.1 Partial Convergent
Definition (Partial Convergents). For 0 ≤ 𝑛 ≤ 𝑚, the 𝑛th convergent of the
continued fraction [𝑎0, . . . , 𝑎𝑚] is [𝑎0, . . . , 𝑎𝑛]. These convergents for 𝑛 < 𝑚

are also called partial convergents.

Proposition (Partial Convergents). For 𝑛 ≥ 0 with 𝑛 ≤ 𝑚 we have

[𝑎0, . . . , 𝑎𝑛] =
𝑝𝑛

𝑞𝑛
.

Proof. We use induction. The assertion is obvious when 𝑛 = 0, 1. Suppose
the proposition is true for all continued fractions of length 𝑛 − 1. Then

[𝑎0, . . . , 𝑎𝑛] = [𝑎0, . . . , 𝑎𝑛−2, 𝑎𝑛−1 +
1
𝑎𝑛

]

=

(
𝑎𝑛−1 + 1

𝑎𝑛

)
𝑝𝑛−2 + 𝑝𝑛−3(

𝑎𝑛−1 + 1
𝑎𝑛

)
𝑞𝑛−2 + 𝑞𝑛−3

=
(𝑎𝑛−1𝑎𝑛 + 1)𝑝𝑛−2 + 𝑎𝑛𝑝𝑛−3
(𝑎𝑛−1𝑎𝑛 + 1)𝑞𝑛−2 + 𝑎𝑛𝑞𝑛−3

=
𝑎𝑛(𝑎𝑛−1𝑝𝑛−2 + 𝑝𝑛−3) + 𝑝𝑛−2
𝑎𝑛(𝑎𝑛−1𝑞𝑛−2 + 𝑞𝑛−3) + 𝑞𝑛−2

=
𝑎𝑛𝑝𝑛−1 + 𝑝𝑛−2
𝑎𝑛𝑞𝑛−1 + 𝑞𝑛−2

=
𝑝𝑛

𝑞𝑛
.

□

Proposition. For 𝑛 ≥ 0 with 𝑛 ≤ 𝑚 we have

𝑝𝑛𝑞𝑛−1 − 𝑞𝑛𝑝𝑛−1 = (−1)𝑛−1
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and

𝑝𝑛𝑞𝑛−2 − 𝑞𝑛𝑝𝑛−2 = (−1)𝑛𝑎𝑛.

Equivalently,
𝑝𝑛

𝑞𝑛
− 𝑝𝑛−1

𝑞𝑛−1
= (−1)𝑛−1 · 1

𝑞𝑛𝑞𝑛−1

and
𝑝𝑛

𝑞𝑛
− 𝑝𝑛−2

𝑞𝑛−2
= (−1)𝑛 · 𝑎𝑛

𝑞𝑛𝑞𝑛−2
.

Proof. The case for 𝑛 = 0 is obvious from the definitions. Now suppose 𝑛 > 0
and the statement is true for 𝑛 − 1. Then

𝑝𝑛𝑞𝑛−1 − 𝑞𝑛𝑝𝑛−1 = (𝑎𝑛𝑝𝑛−1 + 𝑝𝑛−2)𝑞𝑛−1 − (𝑎𝑛𝑞𝑛−1 + 𝑞𝑛−2)𝑝𝑛−1

= 𝑝𝑛−2𝑞𝑛−1 − 𝑞𝑛−2𝑝𝑛−1

= −(𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1)
= −(−1)𝑛−2 = (−1)𝑛−1.

This completes the proof of Simple Continued Fraction. □

Theorem. If [𝑎0, 𝑎1, . . . , 𝑎𝑚] is a simple continued fraction, so each 𝑎𝑖 is an
integer, then the 𝑝𝑛 and 𝑞𝑛 are integers and the fraction 𝑝𝑛/𝑞𝑛 is in lowest
terms.

Proof. It is clear that the 𝑝𝑛 and 𝑞𝑛 are integers, from the formula that
defines them. If 𝑑 is a positive divisor of both 𝑝𝑛 and 𝑞𝑛, then 𝑑 | (−1)𝑛−1,
so 𝑑 = 1. □

1.2 The Sequence of Partial Convergents
Proposition (How Convergents Converge). The even indexed convergents
𝑐2𝑛 increase strictly with 𝑛, and the odd indexed convergents 𝑐2𝑛+1 decrease
strictly with 𝑛. Also, the odd indexed convergents 𝑐2𝑛+1 are greater than all
of the even indexed convergents 𝑐2𝑚.

Proof. The 𝑎𝑛 are positive for 𝑛 ≥ 1, so the 𝑞𝑛 are positive. By proposition,
for 𝑛 ≥ 2,

𝑐𝑛 − 𝑐𝑛−2 = (−1)𝑛 · 𝑎𝑛

𝑞𝑛𝑞𝑛−2
,
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which proves the first claim.
Suppose for the sake of contradiction that there exist integers 𝑟 and 𝑚

such that 𝑐2𝑚+1 < 𝑐2𝑟. From the previous proposition implies that for 𝑛 ≥ 1,

𝑐𝑛 − 𝑐𝑛−1 = (−1)𝑛−1 · 1
𝑞𝑛𝑞𝑛−1

has sign (−1)𝑛−1, so for all 𝑠 ≥ 0 we have 𝑐2𝑠+1 > 𝑐2𝑠. Thus it is impossible
that 𝑟 = 𝑚. If 𝑟 < 𝑚, then by what we proved in the first paragraph, 𝑐2𝑚+1 <

𝑐2𝑟 < 𝑐2𝑚, a contradiction (with 𝑠 = 𝑚). If 𝑟 > 𝑚, then 𝑐2𝑟+1 < 𝑐2𝑚+1 < 𝑐2𝑟,
which is also a contradiction (with 𝑠 = 𝑟). □

1.3 Every Rational Number is Represented
Proposition (Rational Continued Fractions). Every nonzero rational num-
ber can be represented by a simple continued fraction.

Proof. Without loss of generality, we may assume that the rational number
is 𝑎/𝑏, with 𝑏 ≥ 1 and gcd(𝑎, 𝑏) = 1.

𝑎 = 𝑏 · 𝑎0 + 𝑟1, 0 < 𝑟1 < 𝑏

𝑏 = 𝑟1 · 𝑎1 + 𝑟2, 0 < 𝑟2 < 𝑟1

· · ·
𝑟𝑛−2 = 𝑟𝑛−1 · 𝑎𝑛−1 + 𝑟𝑛, 0 < 𝑟𝑛 < 𝑟𝑛−1

𝑟𝑛−1 = 𝑟𝑛 · 𝑎𝑛 + 0.

Note that 𝑎𝑖 > 0 for 𝑖 > 0 (also 𝑟𝑛 = 1, since gcd(𝑎, 𝑏) = 1). Rewrite the
equations as follows:

𝑎/𝑏 = 𝑎0 + 𝑟1/𝑏 = 𝑎0 + 1/(𝑏/𝑟1),
𝑏/𝑟1 = 𝑎1 + 𝑟2/𝑟1 = 𝑎1 + 1/(𝑟1/𝑟2),
𝑟1/𝑟2 = 𝑎2 + 𝑟3/𝑟2 = 𝑎2 + 1/(𝑟2/𝑟3),

· · ·
𝑟𝑛−1/𝑟𝑛 = 𝑎𝑛.

It follows that
𝑎

𝑏
= [𝑎0, 𝑎1, . . . , 𝑎𝑛].

□
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2 Infinite Continued Fractions

2.1 The Continued Fraction Procedur
Let 𝑥 ∈ ℝ and write

𝑥 = 𝑎0 + 𝑡0

with 𝑎0 ∈ ℤ and 0 ≤ 𝑡0 < 1. We call the number 𝑎0 the floor of 𝑥, and we
also sometimes write 𝑎0 = ⌊𝑥⌋. If 𝑡0 ≠ 0, write

1
𝑡0

= 𝑎1 + 𝑡1

with 𝑎1 ∈ ℕ and 0 ≤ 𝑡1 < 1. Thus 𝑡0 = 1
𝑎1+𝑡1 = [0, 𝑎1+𝑡1], which is a continued

fraction expansion of 𝑡0, which need not be simple. Continue in this manner
so long as 𝑡𝑛 ≠ 0 writing

1
𝑡𝑛

= 𝑎𝑛+1 + 𝑡𝑛+1

with 𝑎𝑛+1 ∈ ℕ and 0 ≤ 𝑡𝑛+1 < 1. We call this procedure, which associates to a
real number 𝑥 the sequence of integers 𝑎0, 𝑎1, 𝑎2, . . ., the continued fraction
process.

Example 1. Let 𝑥 = 8
3 . Then 𝑥 = 2+2

3 , so 𝑎0 = 2 and 𝑡0 = 2
3 . Then 1

𝑡0
= 3

2 = 1+1
2 ,

so 𝑎1 = 1 and 𝑡1 = 1
2 . Then 1

𝑡1
= 2, so 𝑎2 = 2, 𝑡2 = 0, and the sequence

terminates. Notice that
8
3 = [2, 1, 2],

so the continued fraction procedure produces the continued fraction of 8
3 .

Example 2. Let 𝑥 = 1+
√

5
2 . Then

𝑥 = 1 + −1 +
√

5
2 ,

so 𝑎0 = 1 and 𝑡0 = −1+
√

5
2 . We have

1
𝑡0

=
2

−1 +
√

5
=
−2 − 2

√
5

−4 =
1 +

√
5

2 ,

6



so 𝑎1 = 1 and 𝑡1 = −1+
√

5
2 . Likewise, 𝑎𝑛 = 1 for all 𝑛. As we will see below, the

following exciting equality makes sense.

1 +
√

5
2 = 1 + 1

1 + 1

1 + 1

1 + 1

1 + 1
1 + · · ·

Example 3. Suppose 𝑥 = 𝑒 = 2.71828182 . . .. Using the continued fraction
procedure, we find that

𝑎0, 𝑎1, 𝑎2, . . . = 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .

For example, 𝑎0 = 2 is the floor of 2. Subtracting 2 and inverting, we
obtain 1/0.718 . . . = 1.3922 . . ., so 𝑎1 = 1. Subtracting 1 and inverting yields
1/0.3922 . . . = 2.5496 . . ., so 𝑎2 = 2.

The 5th partial convergent of the continued fraction of 𝑒 is

[𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5] =
87
32 = 2.71875,

which is a good rational approximation to 𝑒, in the sense that����87
32 − 𝑒

���� = 0.000468 . . . .

Note that 0.000468 . . . < 1/322 = 0.000976 . . ., which illustrates the bound
in Theorem.

Let’s do the same thing with 𝜋 = 3.14159265358979 . . .. Applying the
continued fraction procedure, we find that the continued fraction of 𝜋 is

𝑎0, 𝑎1, 𝑎2, . . . = 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .

The first few partial convergents are

3, 22
7 ,

333
106 ,

355
113 ,

103993
33102 , · · ·

These are good rational approximations to 𝜋; for example,

103993
33102 = 3.14159265301 . . . .
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2.2 Convergence of Infinite Continued Fract
Lemma. For every 𝑛 such that 𝑎𝑛 is defined, we have

𝑥 = [𝑎0, 𝑎1, . . . , 𝑎𝑛 + 𝑡𝑛],

and if 𝑡𝑛 ≠ 0, then 𝑥 = [𝑎0, 𝑎1, . . . , 𝑎𝑛,
1
𝑡𝑛
].

Proof. We use induction. The statements are both true when 𝑛 = 0. If the
second statement is true for 𝑛 − 1, then

𝑥 =

[
𝑎0, 𝑎1, . . . , 𝑎𝑛−1,

1
𝑡𝑛−1

]
= [𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛 + 𝑡𝑛]

=

[
𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛,

1
𝑡𝑛

]
.

Similarly, the first statement is true for 𝑛 if it is true for 𝑛 − 1. □

Theorem (Continued Fraction Limit). Let 𝑎0, 𝑎1, . . . be a sequence of inte-
gers such that 𝑎𝑛 > 0 for all 𝑛 ≥ 1, and for each 𝑛 ≥ 0, set 𝑐𝑛 = [𝑎0, 𝑎1, . . . 𝑎𝑛].
Then lim

𝑛→∞
𝑐𝑛 exists.

Proof. For any 𝑚 ≥ 𝑛, the number 𝑐𝑛 is a partial convergent of [𝑎0, . . . , 𝑎𝑚].
The even convergents 𝑐2𝑛 form a strictly increasing sequence and the odd
convergents 𝑐2𝑛+1 form a strictly decreasing sequence. Moreover, the even
convergents are all ≤ 𝑐1 and the odd convergents are all ≥ 𝑐0. Hence 𝛼0 =

lim𝑛→∞ 𝑐2𝑛 and 𝛼1 = lim𝑛→∞ 𝑐2𝑛+1 both exist, and 𝛼0 ≤ 𝛼1.

|𝑐2𝑛 − 𝑐2𝑛−1 | =
1

𝑞2𝑛 · 𝑞2𝑛−1
≤ 1

2𝑛(2𝑛 − 1) → 0,

so 𝛼0 = 𝛼1. □

We define
[𝑎0, 𝑎1, . . .] = lim

𝑛→∞
𝑐𝑛.

Example 4. We illustrate the theorem with 𝑥 = 𝜋.
Let 𝑐𝑛 be the 𝑛th partial convergent to 𝜋. The 𝑐𝑛 with 𝑛 odd converge down

to 𝜋

𝑐1 = 3.1428571 . . . , 𝑐3 = 3.1415929 . . . , 𝑐5 = 3.1415926 . . .

whereas the 𝑐𝑛 with 𝑛 even converge up to 𝜋

𝑐2 = 3.1415094 . . . , 𝑐4 = 3.1415926 . . . , 𝑐6 = 3.1415926 . . . .
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Theorem. Let 𝑎0, 𝑎1, 𝑎2, . . . be a sequence of real numbers such that 𝑎𝑛 > 0
for all 𝑛 ≥ 1, and for each 𝑛 ≥ 0, set 𝑐𝑛 = [𝑎0, 𝑎1, . . . 𝑎𝑛]. Then lim

𝑛→∞
𝑐𝑛 exists if

and only if the sum ∑∞
𝑛=0 𝑎𝑛 diverges.

Example 5. Let 𝑎𝑛 = 1
𝑛 log(𝑛) for 𝑛 ≥ 2 and 𝑎0 = 𝑎1 = 0. By the integral test,∑

𝑎𝑛 diverges, the continued fraction [𝑎0, 𝑎1, 𝑎2, . . .] converges. This conver-
gence is very slow, since, e.g.

[𝑎0, 𝑎1, . . . , 𝑎9999] = 0.5750039671012225425930 . . .

yet
[𝑎0, 𝑎1, . . . , 𝑎10000] = 0.7169153932917378550424 . . . .

Theorem. Let 𝑥 ∈ ℝ be a real number. Then 𝑥 is the value of the (possibly
infinite) simple continued fraction [𝑎0, 𝑎1, 𝑎2, . . .] produced by the continued
fraction procedure.

Theorem (Convergence of continued fraction). Let 𝑎0, 𝑎1, . . . define a simple
continued fraction, and let 𝑥 = [𝑎0, 𝑎1, . . .] ∈ ℝ be its value. Then for all 𝑚,����𝑥 − 𝑝𝑚

𝑞𝑚

���� < 1
𝑞𝑚 · 𝑞𝑚+1

.
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