Number theory and Cryptography

June 4, 2024

Lecture 9: Continued Fractions

Instructor: Chao Qin

Notes written by: Wenhao Tong and Yingshu Wang

A continued fraction continued fraction is an expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$

We denote the continued fraction displayed above by

$$[a_0, a_1, a_2, \ldots].$$

For example,

$$[1,2] = 1 + \frac{1}{2} = \frac{3}{2},$$

$$[3,7,15,1,292] = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292}}}}$$
$$= \frac{103993}{33102} = 3.14159265301190260407...,$$

and

$$[2,1,2,1,1,4,1,1,6] = 2 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{6}}}}}}}}$$

$$= \cfrac{1264}{465}$$

1 Finite Continued Fractions

Definition (Finite Continued Fraction). A finite continued fraction is an expression

= 2.7182795698924731182795698...

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\cdots + \cfrac{1}{a_n}}}}$$

where each a_m is a real number and $a_m > 0$ for all $m \ge 1$.

Definition (Simple Continued Fraction). A simple continued fraction is a finite or infinite continued fraction in which the a_i are all integers.

To get a feeling for continued fractions, observe that

$$[a_0] = a_0,$$

$$[a_0, a_1] = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_1},$$

$$[a_0, a_1, a_2] = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1}.$$

Also,

$$[a_0, a_1, \dots, a_{n-1}, a_n] = \left[a_0, a_1, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}\right]$$
$$= a_0 + \frac{1}{[a_1, \dots, a_n]}$$
$$= [a_0, [a_1, \dots, a_n]].$$

1.1 Partial Convergent

Definition (Partial Convergents). For $0 \le n \le m$, the nth convergent of the continued fraction $[a_0, \ldots, a_m]$ is $[a_0, \ldots, a_n]$. These convergents for n < m are also called partial convergents.

Proposition (Partial Convergents). For $n \ge 0$ with $n \le m$ we have

$$[a_0,\ldots,a_n]=\frac{p_n}{q_n}.$$

Proof. We use induction. The assertion is obvious when n = 0, 1. Suppose the proposition is true for all continued fractions of length n - 1. Then

$$[a_0, \dots, a_n] = [a_0, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}]$$

$$= \frac{\left(a_{n-1} + \frac{1}{a_n}\right) p_{n-2} + p_{n-3}}{\left(a_{n-1} + \frac{1}{a_n}\right) q_{n-2} + q_{n-3}}$$

$$= \frac{(a_{n-1}a_n + 1)p_{n-2} + a_n p_{n-3}}{(a_{n-1}a_n + 1)q_{n-2} + a_n q_{n-3}}$$

$$= \frac{a_n(a_{n-1}p_{n-2} + p_{n-3}) + p_{n-2}}{a_n(a_{n-1}q_{n-2} + q_{n-3}) + q_{n-2}}$$

$$= \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}$$

$$= \frac{p_n}{q_n}.$$

Proposition. For $n \ge 0$ with $n \le m$ we have

$$p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1}$$

and

$$p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n.$$

Equivalently,

$$\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = (-1)^{n-1} \cdot \frac{1}{q_n q_{n-1}}$$

and

$$\frac{p_n}{q_n} - \frac{p_{n-2}}{q_{n-2}} = (-1)^n \cdot \frac{a_n}{q_n q_{n-2}}.$$

Proof. The case for n = 0 is obvious from the definitions. Now suppose n > 0 and the statement is true for n - 1. Then

$$\begin{aligned} p_n q_{n-1} - q_n p_{n-1} &= (a_n p_{n-1} + p_{n-2}) q_{n-1} - (a_n q_{n-1} + q_{n-2}) p_{n-1} \\ &= p_{n-2} q_{n-1} - q_{n-2} p_{n-1} \\ &= -(p_{n-1} q_{n-2} - p_{n-2} q_{n-1}) \\ &= -(-1)^{n-2} = (-1)^{n-1}. \end{aligned}$$

This completes the proof of Simple Continued Fraction.

Theorem. If $[a_0, a_1, ..., a_m]$ is a simple continued fraction, so each a_i is an integer, then the p_n and q_n are integers and the fraction p_n/q_n is in lowest terms.

Proof. It is clear that the p_n and q_n are integers, from the formula that defines them. If d is a positive divisor of both p_n and q_n , then $d \mid (-1)^{n-1}$, so d = 1.

1.2 The Sequence of Partial Convergents

Proposition (How Convergents Converge). The even indexed convergents c_{2n} increase strictly with n, and the odd indexed convergents c_{2n+1} decrease strictly with n. Also, the odd indexed convergents c_{2n+1} are greater than all of the even indexed convergents c_{2m} .

Proof. The a_n are positive for $n \ge 1$, so the q_n are positive. By proposition, for $n \ge 2$,

$$c_n - c_{n-2} = (-1)^n \cdot \frac{a_n}{q_n q_{n-2}},$$

which proves the first claim.

Suppose for the sake of contradiction that there exist integers r and m such that $c_{2m+1} < c_{2r}$. From the previous proposition implies that for $n \ge 1$,

$$c_n - c_{n-1} = (-1)^{n-1} \cdot \frac{1}{q_n q_{n-1}}$$

has sign $(-1)^{n-1}$, so for all $s \ge 0$ we have $c_{2s+1} > c_{2s}$. Thus it is impossible that r = m. If r < m, then by what we proved in the first paragraph, $c_{2m+1} < c_{2r} < c_{2m}$, a contradiction (with s = m). If r > m, then $c_{2r+1} < c_{2m+1} < c_{2r}$, which is also a contradiction (with s = r).

1.3 Every Rational Number is Represented

Proposition (Rational Continued Fractions). Every nonzero rational number can be represented by a simple continued fraction.

Proof. Without loss of generality, we may assume that the rational number is a/b, with $b \ge 1$ and gcd(a, b) = 1.

$$a = b \cdot a_0 + r_1,$$
 $0 < r_1 < b$
 $b = r_1 \cdot a_1 + r_2,$ $0 < r_2 < r_1$
 \cdots
 $r_{n-2} = r_{n-1} \cdot a_{n-1} + r_n,$ $0 < r_n < r_{n-1}$
 $r_{n-1} = r_n \cdot a_n + 0.$

Note that $a_i > 0$ for i > 0 (also $r_n = 1$, since gcd(a, b) = 1). Rewrite the equations as follows:

$$a/b = a_0 + r_1/b = a_0 + 1/(b/r_1),$$

 $b/r_1 = a_1 + r_2/r_1 = a_1 + 1/(r_1/r_2),$
 $r_1/r_2 = a_2 + r_3/r_2 = a_2 + 1/(r_2/r_3),$
...
 $r_{n-1}/r_n = a_n.$

It follows that

$$\frac{a}{b} = [a_0, a_1, \dots, a_n].$$

2 Infinite Continued Fractions

2.1 The Continued Fraction Procedur

Let $x \in \mathbb{R}$ and write

$$x = a_0 + t_0$$

with $a_0 \in \mathbb{Z}$ and $0 \le t_0 < 1$. We call the number a_0 the *floor* of x, and we also sometimes write $a_0 = \lfloor x \rfloor$. If $t_0 \ne 0$, write

$$\frac{1}{t_0} = a_1 + t_1$$

with $a_1 \in \mathbb{N}$ and $0 \le t_1 < 1$. Thus $t_0 = \frac{1}{a_1 + t_1} = [0, a_1 + t_1]$, which is a continued fraction expansion of t_0 , which need not be simple. Continue in this manner so long as $t_n \ne 0$ writing

$$\frac{1}{t_n} = a_{n+1} + t_{n+1}$$

with $a_{n+1} \in \mathbb{N}$ and $0 \le t_{n+1} < 1$. We call this procedure, which associates to a real number x the sequence of integers a_0, a_1, a_2, \ldots , the continued fraction process.

Example 1. Let $x = \frac{8}{3}$. Then $x = 2 + \frac{2}{3}$, so $a_0 = 2$ and $t_0 = \frac{2}{3}$. Then $\frac{1}{t_0} = \frac{3}{2} = 1 + \frac{1}{2}$, so $a_1 = 1$ and $t_1 = \frac{1}{2}$. Then $\frac{1}{t_1} = 2$, so $a_2 = 2$, $t_2 = 0$, and the sequence terminates. Notice that

$$\frac{8}{3}$$
 = [2, 1, 2],

so the continued fraction procedure produces the continued fraction of $\frac{8}{3}$.

Example 2. Let $x = \frac{1+\sqrt{5}}{2}$. Then

$$x = 1 + \frac{-1 + \sqrt{5}}{2},$$

so $a_0 = 1$ and $t_0 = \frac{-1+\sqrt{5}}{2}$. We have

$$\frac{1}{t_0} = \frac{2}{-1 + \sqrt{5}} = \frac{-2 - 2\sqrt{5}}{-4} = \frac{1 + \sqrt{5}}{2},$$

so $a_1 = 1$ and $t_1 = \frac{-1+\sqrt{5}}{2}$. Likewise, $a_n = 1$ for all n. As we will see below, the following exciting equality makes sense.

$$\frac{1+\sqrt{5}}{2} = 1 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}$$

Example 3. Suppose x = e = 2.71828182... Using the continued fraction procedure, we find that

$$a_0, a_1, a_2, \ldots = 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, \ldots$$

For example, $a_0 = 2$ is the floor of 2. Subtracting 2 and inverting, we obtain 1/0.718... = 1.3922..., so $a_1 = 1$. Subtracting 1 and inverting yields 1/0.3922... = 2.5496..., so $a_2 = 2$.

The 5th partial convergent of the continued fraction of e is

$$[a_0, a_1, a_2, a_3, a_4, a_5] = \frac{87}{32} = 2.71875,$$

which is a good rational approximation to e, in the sense that

$$\left| \frac{87}{32} - e \right| = 0.000468 \dots$$

Note that $0.000468... < 1/32^2 = 0.000976...$, which illustrates the bound in Theorem.

Let's do the same thing with $\pi = 3.14159265358979...$ Applying the continued fraction procedure, we find that the continued fraction of π is

$$a_0, a_1, a_2, \ldots = 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \ldots$$

The first few partial convergents are

$$3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \frac{103993}{33102}, \dots$$

These are good rational approximations to π ; for example,

$$\frac{103993}{33102} = 3.14159265301\dots$$

2.2 Convergence of Infinite Continued Fract

Lemma. For every n such that a_n is defined, we have

$$x = [a_0, a_1, \ldots, a_n + t_n],$$

and if $t_n \neq 0$, then $x = [a_0, a_1, ..., a_n, \frac{1}{t_n}]$.

Proof. We use induction. The statements are both true when n = 0. If the second statement is true for n - 1, then

$$x = \left[a_0, a_1, \dots, a_{n-1}, \frac{1}{t_{n-1}}\right]$$

$$= \left[a_0, a_1, \dots, a_{n-1}, a_n + t_n\right]$$

$$= \left[a_0, a_1, \dots, a_{n-1}, a_n, \frac{1}{t_n}\right].$$

Similarly, the first statement is true for n if it is true for n-1.

Theorem (Continued Fraction Limit). Let a_0, a_1, \ldots be a sequence of integers such that $a_n > 0$ for all $n \ge 1$, and for each $n \ge 0$, set $c_n = [a_0, a_1, \ldots a_n]$. Then $\lim_{n \to \infty} c_n$ exists.

Proof. For any $m \ge n$, the number c_n is a partial convergent of $[a_0, \ldots, a_m]$. The even convergents c_{2n} form a strictly *increasing* sequence and the odd convergents c_{2n+1} form a strictly *decreasing* sequence. Moreover, the even convergents are all $\le c_1$ and the odd convergents are all $\ge c_0$. Hence $a_0 = \lim_{n \to \infty} c_{2n}$ and $a_1 = \lim_{n \to \infty} c_{2n+1}$ both exist, and $a_0 \le a_1$.

$$|c_{2n}-c_{2n-1}|=rac{1}{q_{2n}\cdot q_{2n-1}}\leq rac{1}{2n(2n-1)} o 0,$$

so $\alpha_0 = \alpha_1$.

We define

$$[a_0,a_1,\ldots]=\lim_{n\to\infty}c_n.$$

Example 4. We illustrate the theorem with $x = \pi$.

Let c_n be the nth partial convergent to π . The c_n with n odd converge down to π

$$c_1 = 3.1428571..., c_3 = 3.1415929..., c_5 = 3.1415926...$$

whereas the c_n with n even converge up to π

$$c_2 = 3.1415094..., c_4 = 3.1415926..., c_6 = 3.1415926...$$

Theorem. Let a_0, a_1, a_2, \ldots be a sequence of real numbers such that $a_n > 0$ for all $n \ge 1$, and for each $n \ge 0$, set $c_n = [a_0, a_1, \ldots a_n]$. Then $\lim_{n \to \infty} c_n$ exists if and only if the sum $\sum_{n=0}^{\infty} a_n$ diverges.

Example 5. Let $a_n = \frac{1}{n \log(n)}$ for $n \ge 2$ and $a_0 = a_1 = 0$. By the integral test, $\sum a_n$ diverges, the continued fraction $[a_0, a_1, a_2, \ldots]$ converges. This convergence is very slow, since, e.g.

$$[a_0, a_1, \dots, a_{9999}] = 0.5750039671012225425930\dots$$

yet

$$[a_0, a_1, \dots, a_{10000}] = 0.7169153932917378550424\dots$$

Theorem. Let $x \in \mathbb{R}$ be a real number. Then x is the value of the (possibly infinite) simple continued fraction $[a_0, a_1, a_2, \ldots]$ produced by the continued fraction procedure.

Theorem (Convergence of continued fraction). Let a_0, a_1, \ldots define a simple continued fraction, and let $x = [a_0, a_1, \ldots] \in \mathbb{R}$ be its value. Then for all m,

$$\left|x-\frac{p_m}{q_m}\right|<\frac{1}{q_m\cdot q_{m+1}}.$$