Number theory and Cryptography June 4, 2024
Lecture 9 : Continued Fractions

Instructor: Chao Qin Notes written by: Wenhao Tong and Yingshu Wang

A continued fraction continued fraction is an expression of the form
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ao +

a1 +
1 1

ag + ——

We denote the continued fraction displayed above by

[ag,a1,as,...].

For example,

1 3
1,2]=1+2=2
[L2]=1+5=3,

[3,7,15,1,292] =3 + 11
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292
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= 33102 - 3.14159265301190260407 . . .,



and
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= 2.7182795698924731182795698 . . .

1 Finite Continued Fractions
Definition (Finite Continued Fraction). A finite continued fraction is an

expression
1
ag + 1
“ar T
ag + 1

Qan
where each a,, is a real number and a,, > 0 for all m > 1.

Definition (Simple Continued Fraction). A simple continued fraction is a
finite or infinite continued fraction in which the a; are all integers.

To get a feeling for continued fractions, observe that

[ao] = ao,
1 apal + 1
lag,a1]l =ap+ — = ———,
ai ai
1 apaiag +ag + ag
lao, a1, a2] = ap + T = :
ajag + 1
a1+ —
az



Also,

1
[@o,a1,...,8n-1,a,] = |@0,Q1,...,0p-2,0,-1 + -
n
L1
la1,...,a,]
= [ao, [a1,...,a,]].

1.1 Partial Convergent

Definition (Partial Convergents). For 0 < n < m, the nth convergent of the
continued fraction |[ag,...,an] Is |ag,...,a,]. These convergents for n < m
are also called partial convergents.

Proposition (Partial Convergents). For n > 0 with n < m we have

= Pn
In

[ao, ..., an]

Proof. We use induction. The assertion is obvious when n = 0, 1. Suppose
the proposition is true for all continued fractions of length n — 1. Then
1

[a'07 DI an] = [(10, ey Qp-2,0p-1t _]
an

1
(an—l + a_n) Pn-2 + Pp-3

B 1
(an—l + a) qn-2 +qn-3

_ (@n10n + 1)pn-2 + anpn-3
(an—lan + ]-)qn—2 +anqn-3
_ an(an—lpn—Q + pn—3) + Pn-2
an(@n-19n-2 + qn-3) + qn-2
_ anPn-1+ Pn-2
anQqn-1+qn-2
_ Pn
an

Proposition. For n > 0 with n < m we have

Pndn-1— qnPn-1 = (-1)"1



and

Pndn-2 — @nPn-2 = (-1)"an.

Equivalently,
& _ pn—l — (_l)n—l . 1

an dn-1 dnqn-1

and
& _ Pn-2 — (_1)n an

dn  Gn-2 Gnqn-2

Proof. The case for n = 0 is obvious from the definitions. Now supposen > 0
and the statement is true for n — 1. Then

Pndn-1— qnPn-1 = (@nPp-1+ Pn-2)qn-1 = (@nqn-1+ qn-2)Pn-1
= Pn-249n-1 — 4n-2Pn-1
= —(Pn-19n-2 — Pn-29n-1)
— (1= (—1L

This completes the proof of Simple Continued Fraction. |

Theorem. If [ag,aq,...,an] is a simple continued fraction, so each a; is an
integer, then the p, and q, are integers and the fraction p,/q, is in lowest
terms.

Proof. 1t is clear that the p, and g, are integers, from the formula that
defines them. If d is a positive divisor of both p, and g,, then d | (-1)"1,
sod=1. O

1.2 The Sequence of Partial Convergents

Proposition (How Convergents Converge). The even indexed convergents
co, increase strictly with n, and the odd indexed convergents cg,.1 decrease
strictly with n. Also, the odd indexed convergents co,,1 are greater than all
of the even indexed convergents co,y,.

Proof. The a, are positive for n > 1, so the g,, are positive. By proposition,

forn > 2,
an

anqn-2 ’

Ch —Cp-2 = (_l)n :



which proves the first claim.
Suppose for the sake of contradiction that there exist integers » and m
such that cg,,+1 < co,. From the previous proposition implies that for n > 1,
1
qndn-1

e —cp1 = (-1

has sign (-1)""1, so for all s > 0 we have cgs,1 > cos. Thus it is impossible
that r = m. If r < m, then by what we proved in the first paragraph, co,,,1 <
cor < Com, a contradiction (with s = m). If r > m, then cg,,1 < coms1 < cor,
which is also a contradiction (with s = r). |

1.3 Every Rational Number is Represented

Proposition (Rational Continued Fractions). Every nonzero rational num-
ber can be represented by a simple continued fraction.

Proof. Without loss of generality, we may assume that the rational number
is a/b, with b > 1 and ged(a, b) = 1.

a=b-ag+ry, O<ri<b
b=ri-ai+ro, 0<l”2<l”1
'n—2 =Tpn-1Qp-1+Tp, 0<rp<rp1

Ppn1="rn-an+0.

Note that a; > 0 for i > 0 (also r, = 1, since ged(a,b) = 1). Rewrite the
equations as follows:

a/b=ag+ri/b=ag+1/(b/ry),
b/ri=a1+rg/ri=a1+1/(ri/ra),
ri/ra =ag+r3/rg =ag+1/(rg/rs),

rn—l/rn =dap.

It follows that

a
E = [ao’a].?"-yan]-



2 Infinite Continued Fractions

2.1 The Continued Fraction Procedur

Let x € R and write
X =ag+ti

with ag € Z and 0 < ¢tg < 1. We call the number a the floor of x, and we
also sometimes write ag = |x]. If #g # 0, write

—=aj+t
fo 1t

witha; e Nand 0 <¢; < 1. Thustg = ritl = [0, a1+t1], which is a continued
fraction expansion of ¢y, which need not be simple. Continue in this manner
so long as ¢, # 0 writing
— = Qp+l T lnsl
n

with a,,1 € Nand 0 < ¢,,1 < 1. We call this procedure, which associates to a
real number x the sequence of integers a, a1, as, . . ., the continued fraction
process.

Examplel. Let x = %. Then x = 2+%, soag=2andty = % Then % = % = 1+%,

soa; = land t; = % Then % = 2,80 ag = 2, tg = 0, and the sequence
terminates. Notice that 3

-=0[2,1,2
3 [’7]7

so the continued fraction procedure produces the continued fraction of %.

Example 2. Let x = %g Then

-1+v5
x=1+ ,
2
S0 aozlandtoz%‘/g. We have
1 2  2-2V5 1+V5
o _1+v5 4 2



soa;=1landt] = %‘/5 Likewise, a, = 1 for all n. As we will see below, the
following exciting equality makes sense.

1+V5 1
=1+

2 1

1+

1
1
1
1+---

Example 3. Suppose x = e = 2.71828182. ... Using the continued fraction
procedure, we find that

1+
1+
1+

ap,a1,a9,...=2,1,2,1,1,4,1,1,6,1,1,8,1,1, 10, . ..

For example, ag = 2 is the floor of 2. Subtracting 2 and inverting, we
obtain 1/0.718...=1.3922...,s0 a; = 1. Subtracting 1 and inverting yields
1/0.3922...=2.5496...,s0 ag = 2.

The 5th partial convergent of the continued fraction of e is

[ao, a1, az, a3, a4, as] = g—; = 2.71875,

which is a good rational approximation to e, in the sense that

87
——e

39 =0.000468. ...

Note that 0.000468 ... < 1/322 = 0.000976 . . ., which illustrates the bound
in Theorem.

Let’s do the same thing with 7 = 3.14159265358979.... Applying the
continued fraction procedure, we find that the continued fraction of 7 is

ag,a1,a2,...=3,7,15,1,292,1,1,1,2,1,3,1, 14, . ..

The first few partial convergents are

22 333 355 103993
> 7°106° 113’ 33102°

These are good rational approximations to z; for example,

103993
33102

=3.14159265301. ...




2.2 Convergence of Infinite Continued Fract
Lemma. For every n such that a, is defined, we have

x = [ag,a1,...,an +t,],
and if t, # 0, then x = [ag,a1,...,an,, %].

Proof. We use induction. The statements are both true when n = 0. If the
second statement is true for n — 1, then

1 :|
X=1a0,01,.-.,0n-1, 7
L tn-1
= [a07 al’ e 7an—]_7 an + tn]
) 1 }
=1a0,01,---,0-1,Qn, 7| -
| In
Similarly, the first statement is true for n if it is true for n — 1. O
Theorem (Continued Fraction Limit). Let ag, a1,... be a sequence of inte-

gers such that a, > 0 for all n > 1, and for each n > 0, set ¢, = [ag, a1, ...a,].
Then lim c, exists.

n—oo

Proof. For any m > n, the number c, is a partial convergent of [ao, ..., an].
The even convergents cg, form a strictly increasing sequence and the odd
convergents co,,1 form a strictly decreasing sequence. Moreover, the even
convergents are all < ¢; and the odd convergents are all > ¢g. Hence a( =
lim,, . c9, and a1 = lim,,_, c9,+1 both exist, and a¢ < a;.
1 1

< —
q2n* q2n-1  2n(2n-1)
SO ap = a7. O

We define

0,

|02n - (32n—1| =

[ao, ai, .. ] = lim Cp.

n—oo

Example 4. We illustrate the theorem with x = 7.
Let c,, be the nth partial convergent to n. The c, with n odd converge down
ton
c1 =3.1428571..., c3 = 3.1415929 ..., c5 = 3.1415926.. ..

whereas the c, with n even converge up to n

cg =3.1415094 . .., c4 = 3.1415926. .., cg = 3.1415926. . ..

8



Theorem. Let ay, a1, aq, ... be a sequence of real numbers such that a, > 0
for all n > 1, and for each n > 0, set ¢, = |ag, a1, ...a,]. Then lim c, exists if
n—oo

and only if the sum ¥, a, diverges.
Example 5. Let a, = #g(n) for n > 2 and ag = a1 = 0. By the integral test,

> a, diverges, the continued fraction [ag, a1, as,...] converges. This conver-
gence 1s very slow, since, e.g.

[ao, a1, ..., a9999] = 0.5750039671012225425930. ..

yet
[ao,a1,--.,a10000] =0.7169153932917378550424 . . ..

Theorem. Let x € R be a real number. Then x is the value of the (possibly
infinite) simple continued fraction [ag, a1, as, . ..] produced by the continued
fraction procedure.

Theorem (Convergence of continued fraction). Let ag, a1, . . . define a simple
continued fraction, and let x = [ag, a1,...] € R be its value. Then for all m,

1
dm " 9m+1 .

b
x— == <

dm
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