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Definition (Quadratic Residue). Fix a prime p. An integer a not divisible
by p is a quadratic residue modulo p if a is a square modulo p; otherwise, a
is a quadratic nonresidue.

For example, the squares modulo 5 are
12=1, 22=4, 32=4, 4°=1, (mod 5)

so 1 and 4 are both quadratic residues and 2 and 3 are quadratic non-
residues.

Definition (Legendre Symbol). Let p be an odd prime and let a be an inte-
ger. Set
0 ifged(a,p) #1,
(ﬁ) =1+1 if ais a quadratic residue, and
b -1 if ais a quadratic nonresidue.
We call this symbol the Legendre Symbol.

For example, we have
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Lemma. The map v : (Z/pZ)* — {1} given by y(a) = (;’—)) s a surjective
group homomorphism.

Theorem (Gauss’s Quadratic Reciprocity Law). Suppose p and q are dis-

(—) (_ 1) 2 "2 (—) .
q p

(—_1) _ (L)1 and (g) _ 1 ifp=+1 (mod8)
p -1 if p=+3 (mod 8).




In our example, Gauss’s theorem implies that

o1 1 ifp=14 (mod5)
(g):(_1)2 : (g):(l_)):{tl ;f§52,3 <$zd 5).

Example 1. Is 69 a square modulo the prime 3892 We have
69 3-23 3 23
(389) B ( 389 ) B (389) ' (389) =)=t
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28 _(389) (21) (-2
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Thus 69 is a square modulo 389.

Here

and

Proposition (Euler’s Criterion). We have (%) = 1if and only if
a? D2 =1 (mod p).

Corollary. The equation x> = a (mod p) has no solution if and only if

a?"D/2 = ~1 (mod p). Thus (2) = a?"V/2 (mod p).

Proof. This follows from Euler’s Criterion and the fact that the polynomial
x? — 1 has no roots besides +1 and —1. ]

Example 2. Suppose p = 11. By squaring each element of (Z./117)*, we see
that the squares modulo 11 are {1,3,4,5,9}. We compute a»~V/2 = 45 for
each a € (7./117)* and get

15=1,20=-1,3°=1,45=1,55=1,
6°=-1,7°=-1,8"=-1,9°=1,10° = -1.

Thus the a with o® = 1 are {1, 3,4, 5,9}, just as Euler’s Criterion predicts.
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Lemma (Gauss’s Lemma). Let p be an odd prime and let a be an integer
# 0 (mod p). Form the numbers

p—-1
2

and reduce them modulo p to lie in the interval (-§, %), i.e., for each of the
above products k - a find a number in the interval (-5, ) that is congruent
to k- a modulo p. Let v be the number of negative numbers in the resulting

set. Then
-
p

Lemma. Let a,b € Q. Then for any integer n,

a, 2a, 3a, ..., a

#((a,b)NZ) =#((a,b+2n)NZ) (mod 2)
and

#((a,b)NZ)=#((a—2n,b)NZ) (mod 2),
provided that each interval involved in the congruence is nonempty.

Proposition (Euler). Let p be an odd prime and let a be a positive integer
with p { a. If q is a prime with q = +p (mod 4a), then (%) = (%)
Proposition (Legendre Symbol of 2). Let p be an odd prime. Then
(2) ] 1 ifp==+1 (mod 8)

p) |-1 ifp=x3 (mod 8).

Proof. When a =2, the set S ={a, 2aq,..., ’%la} 18
{2,4,6,...,p—1}.

We must count the parity of the number of elements of S that lie in the
interval I = (4, p). Writing p = 8c +r, we have

42
r r r r
:#((20+Z,4C+§)OZ) :#((Z,ﬁ)ﬁZ) (mod 2),
where the last equality comes from Lemma . The possibilities for r are
1,3,5,7. When r = 1, the cardinality is 0; when r = 3,5 it is 1; and when
r="7Titis 2. m|

#(ImS):#(%ImZ):#((p p)nz)



Definition (Root of Unity). An nth root of unity is a complex number { such
that (" = 1. A root of unity { is a primitive nth root of unity if n is the smallest
positive integer such that (" = 1.

For example, —1 is a primitive second root of unity, and ¢ = \/__3_1 is
a primitive cube root of unity. More generally, for any n € IN the complex
number

(n =cos(27/n) +isin(27x/n)

is a primitive nth root of unity (this follows from the identity ¢! = cos(8) +
i sin(#)). For the rest of this section, we fix an odd prime p and the primitive
pth root ¢ = {, of unity.

Definition (Gauss Sum). Fix an odd prime p. The Gauss sum associated

to an integer a is
p-1 n
8a = —| ¢,
‘ Z(p)

n=1

where { = ¢, = cos(27/p) +isin(2r/p) = e/P.
Proposition (Gauss Sum). For any a not divisible by p,
g2 = (-1 /2p,

Lemma. For any integer a,

0 otherwise.

li(an_{p ifa=0 (mod p),

n=0

Proof. If a = 0 (mod p), then {* = 1, so the sum equals the number of
summands, which is p. If a # 0 (mod p), then we use the identity

P —1=(@x-DEP T+ +x+1)

with x = (*. We have {(* # 1,80 (-1 # 0 and

2 aw_1 1-1
St _ 0.
n=0 ¢e-1 ¢o-1



Lemma. If x and y are arbitrary integers, then

pz_il ((x—y)n — {p ifx = Yy (mOd p),

— 0 otherwise.
n=0

Proof. This follows from last Lemma by setting a = x — y. |
Lemma. We have gg = 0.

Proof. By definition

p-1 n
= —1. 1
80 Z (p) @®

n=0
the map

(;) (Z)pZ)* — {+1}
P

is a surjective homomorphism of groups. Thus, half the elements of (Z/pZ)*
map to +1 and half map to —1 (the subgroup that maps to +1 has index 2).

Since (%) =0, the sum is 0. O

8a=|—]81-
b

Proof. When a = 0 (mod p), the lemma follows from last Lemma, so sup-
pose that @ # 0 (mod p). Then,

(e G265 ()-S5

n=0 n=0 m=0

Lemma. For any integer a,

Here, we use that multiplication by a is an automorphism of Z/pZ. Finally,
2
multiply both sides by (%) and use that (%) =1. |



