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Lecture 7: Quadratic Reciprocity
Instructor: Chao Qin Notes written by: Wenhao Tong and Yingshu Wang

Definition (Quadratic Residue). Fix a prime 𝑝. An integer 𝑎 not divisible
by 𝑝 is a quadratic residue modulo 𝑝 if 𝑎 is a square modulo 𝑝; otherwise, 𝑎
is a quadratic nonresidue.

For example, the squares modulo 5 are

12 = 1, 22 = 4, 32 = 4, 42 = 1, (mod 5)

so 1 and 4 are both quadratic residues and 2 and 3 are quadratic non-
residues.

Definition (Legendre Symbol). Let 𝑝 be an odd prime and let 𝑎 be an inte-
ger. Set (

𝑎

𝑝

)
=


0 if gcd(𝑎, 𝑝) ≠ 1,
+1 if 𝑎 is a quadratic residue, and
−1 if 𝑎 is a quadratic nonresidue.

We call this symbol the Legendre Symbol.
For example, we have(

1
5

)
= 1,

(
2
5

)
= −1,

(
3
5

)
= −1,

(
4
5

)
= 1,

(
5
5

)
= 0.

Lemma. The map 𝜓 : (ℤ/𝑝ℤ)∗ → {±1} given by 𝜓 (𝑎) =
(
𝑎
𝑝

)
is a surjective

group homomorphism.
Theorem (Gauss’s Quadratic Reciprocity Law). Suppose 𝑝 and 𝑞 are dis-
tinct odd primes. Then (

𝑝

𝑞

)
= (−1)

𝑝−1
2 · 𝑞−1

2

(
𝑞

𝑝

)
.

Also (
−1
𝑝

)
= (−1) (𝑝−1)/2 and

(
2
𝑝

)
=

{
1 if 𝑝 ≡ ±1 (mod 8)

−1 if 𝑝 ≡ ±3 (mod 8).
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In our example, Gauss’s theorem implies that(
5
𝑝

)
= (−1)2· 𝑝−1

2
( 𝑝
5

)
=

( 𝑝
5

)
=

{
+1 if 𝑝 ≡ 1, 4 (mod 5)
−1 if 𝑝 ≡ 2, 3 (mod 5).

Example 1. Is 69 a square modulo the prime 389? We have(
69
389

)
=

(
3 · 23
389

)
=

(
3

389

)
·
(

23
389

)
= (−1) · (−1) = 1.

Here (
3

389

)
=

(
389
3

)
=

(
2
3

)
= −1,

and (
23
389

)
=

(
389
23

)
=

(
21
23

)
=

(
−2
23

)
=

(
−1
23

) (
2
23

)
= (−1) 23−1

2 · 1 = −1.

Thus 69 is a square modulo 389.

Proposition (Euler’s Criterion). We have
(
𝑎
𝑝

)
= 1 if and only if

𝑎(𝑝−1)/2 ≡ 1 (mod 𝑝).

Corollary. The equation 𝑥2 ≡ 𝑎 (mod 𝑝) has no solution if and only if
𝑎(𝑝−1)/2 ≡ −1 (mod 𝑝). Thus

(
𝑎
𝑝

)
≡ 𝑎(𝑝−1)/2 (mod 𝑝).

Proof. This follows from Euler’s Criterion and the fact that the polynomial
𝑥2 − 1 has no roots besides +1 and −1. □

Example 2. Suppose 𝑝 = 11. By squaring each element of (ℤ/11ℤ)∗, we see
that the squares modulo 11 are {1, 3, 4, 5, 9}. We compute 𝑎(𝑝−1)/2 = 𝑎5 for
each 𝑎 ∈ (ℤ/11ℤ)∗ and get

15 = 1, 25 = −1, 35 = 1, 45 = 1, 55 = 1,
65 = −1, 75 = −1, 85 = −1, 95 = 1, 105 = −1.

Thus the 𝑎 with 𝑎5 = 1 are {1, 3, 4, 5, 9}, just as Euler’s Criterion predicts.
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Lemma (Gauss’s Lemma). Let 𝑝 be an odd prime and let 𝑎 be an integer
̸≡ 0 (mod 𝑝). Form the numbers

𝑎, 2𝑎, 3𝑎, . . . , 𝑝 − 1
2 𝑎

and reduce them modulo 𝑝 to lie in the interval (− 𝑝

2 ,
𝑝

2 ), i.e., for each of the
above products 𝑘 · 𝑎 find a number in the interval (− 𝑝

2 ,
𝑝

2 ) that is congruent
to 𝑘 · 𝑎 modulo 𝑝. Let 𝜈 be the number of negative numbers in the resulting
set. Then (

𝑎

𝑝

)
= (−1)𝜈 .

Lemma. Let 𝑎, 𝑏 ∈ ℚ. Then for any integer 𝑛,

# ((𝑎, 𝑏) ∩ ℤ) ≡ # ((𝑎, 𝑏 + 2𝑛) ∩ ℤ) (mod 2)

and
# ((𝑎, 𝑏) ∩ ℤ) ≡ # ((𝑎 − 2𝑛, 𝑏) ∩ ℤ) (mod 2),

provided that each interval involved in the congruence is nonempty.

Proposition (Euler). Let 𝑝 be an odd prime and let 𝑎 be a positive integer
with 𝑝 ∤ 𝑎. If 𝑞 is a prime with 𝑞 ≡ ±𝑝 (mod 4𝑎), then

(
𝑎
𝑝

)
=

(
𝑎
𝑞

)
.

Proposition (Legendre Symbol of 2). Let 𝑝 be an odd prime. Then(
2
𝑝

)
=

{
1 if 𝑝 ≡ ±1 (mod 8)

−1 if 𝑝 ≡ ±3 (mod 8).

Proof. When 𝑎 = 2, the set 𝑆 = {𝑎, 2𝑎, . . . , 𝑝−1
2 𝑎} is

{2, 4, 6, . . . , 𝑝 − 1}.

We must count the parity of the number of elements of 𝑆 that lie in the
interval 𝐼 = ( 𝑝2 , 𝑝). Writing 𝑝 = 8𝑐 + 𝑟, we have

# (𝐼 ∩ 𝑆) = #
(
1
2 𝐼 ∩ ℤ

)
= #

(( 𝑝
4 ,

𝑝

2

)
∩ ℤ

)
= #

((
2𝑐 + 𝑟

4 , 4𝑐 + 𝑟

2

)
∩ ℤ

)
≡ #

(( 𝑟
4 ,

𝑟

2

)
∩ ℤ

)
(mod 2),

where the last equality comes from Lemma . The possibilities for 𝑟 are
1, 3, 5, 7. When 𝑟 = 1, the cardinality is 0; when 𝑟 = 3, 5 it is 1; and when
𝑟 = 7 it is 2. □
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Definition (Root of Unity). An 𝑛th root of unity is a complex number 𝜁 such
that 𝜁𝑛 = 1. A root of unity 𝜁 is a primitive 𝑛th root of unity if 𝑛 is the smallest
positive integer such that 𝜁𝑛 = 1.

For example, −1 is a primitive second root of unity, and 𝜁 =
√
−3−1

2 is
a primitive cube root of unity. More generally, for any 𝑛 ∈ ℕ the complex
number

𝜁𝑛 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛)

is a primitive 𝑛th root of unity (this follows from the identity 𝑒𝑖𝜃 = cos(𝜃) +
𝑖 sin(𝜃)). For the rest of this section, we fix an odd prime 𝑝 and the primitive
𝑝th root 𝜁 = 𝜁𝑝 of unity.

Definition (Gauss Sum). Fix an odd prime 𝑝. The Gauss sum associated
to an integer 𝑎 is

𝑔𝑎 =

𝑝−1∑︁
𝑛=1

(
𝑛

𝑝

)
𝜁𝑎𝑛,

where 𝜁 = 𝜁𝑝 = cos(2𝜋/𝑝) + 𝑖 sin(2𝜋/𝑝) = 𝑒2𝜋𝑖/𝑝.

Proposition (Gauss Sum). For any 𝑎 not divisible by 𝑝,

𝑔2
𝑎 = (−1) (𝑝−1)/2𝑝.

Lemma. For any integer 𝑎,

𝑝−1∑︁
𝑛=0

𝜁𝑎𝑛 =

{
𝑝 if 𝑎 ≡ 0 (mod 𝑝),
0 otherwise.

Proof. If 𝑎 ≡ 0 (mod 𝑝), then 𝜁𝑎 = 1, so the sum equals the number of
summands, which is 𝑝. If 𝑎 ̸≡ 0 (mod 𝑝), then we use the identity

𝑥𝑝 − 1 = (𝑥 − 1) (𝑥𝑝−1 + · · · + 𝑥 + 1)

with 𝑥 = 𝜁𝑎. We have 𝜁𝑎 ≠ 1, so 𝜁𝑎 − 1 ≠ 0 and

𝑝−1∑︁
𝑛=0

𝜁𝑎𝑛 =
𝜁𝑎𝑝 − 1
𝜁𝑎 − 1 =

1 − 1
𝜁𝑎 − 1 = 0.

□

4



Lemma. If 𝑥 and 𝑦 are arbitrary integers, then

𝑝−1∑︁
𝑛=0

𝜁 (𝑥−𝑦)𝑛 =

{
𝑝 if 𝑥 ≡ 𝑦 (mod 𝑝),
0 otherwise.

Proof. This follows from last Lemma by setting 𝑎 = 𝑥 − 𝑦. □

Lemma. We have 𝑔0 = 0.

Proof. By definition

𝑔0 =

𝑝−1∑︁
𝑛=0

(
𝑛

𝑝

)
. (1)

the map (
·
𝑝

)
: (ℤ/𝑝ℤ)∗ → {±1}

is a surjective homomorphism of groups. Thus, half the elements of (ℤ/𝑝ℤ)∗
map to +1 and half map to −1 (the subgroup that maps to +1 has index 2).
Since

(
0
𝑝

)
= 0, the sum is 0. □

Lemma. For any integer 𝑎,

𝑔𝑎 =

(
𝑎

𝑝

)
𝑔1.

Proof. When 𝑎 ≡ 0 (mod 𝑝), the lemma follows from last Lemma, so sup-
pose that 𝑎 ̸≡ 0 (mod 𝑝). Then,(

𝑎

𝑝

)
𝑔𝑎 =

(
𝑎

𝑝

) 𝑝−1∑︁
𝑛=0

(
𝑛

𝑝

)
𝜁𝑎𝑛 =

𝑝−1∑︁
𝑛=0

(
𝑎𝑛

𝑝

)
𝜁𝑎𝑛 =

𝑝−1∑︁
𝑚=0

(
𝑚

𝑝

)
𝜁𝑚 = 𝑔1.

Here, we use that multiplication by 𝑎 is an automorphism of ℤ/𝑝ℤ. Finally,
multiply both sides by

(
𝑎
𝑝

)
and use that

(
𝑎
𝑝

)2
= 1. □
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