Lecture 4: Structure of $\mathbb{Z}/p\mathbb{Z}$

Instructor: Chao Qin

Notes written by: Wenhao Tong and Yingshu Wang

Definition (Primitive Root). A primitive root modulo an integer n is an element of $(\mathbb{Z}/n\mathbb{Z})^*$ of order $\varphi(n)$.

Proposition. Let p be a prime number and let d be a divisor of p-1. Then $f = x^d - 1 \in (\mathbb{Z}/p\mathbb{Z})[x]$ has exactly d roots in $\mathbb{Z}/p\mathbb{Z}$.

Proof. Let e = (p-1)/d. We have

$$x^{p-1} - 1 = (x^d)^e - 1$$

$$= (x^d - 1)((x^d)^{e-1} + (x^d)^{e-2} + \dots + 1)$$

$$= (x^d - 1)g(x),$$

where $g \in (\mathbb{Z}/p\mathbb{Z})[x]$ and $\deg(g) = de - d = p - 1 - d$. Fetmat's Little Theorem implies that $x^{p-1} - 1$ has exactly p-1 roots in $\mathbb{Z}/p\mathbb{Z}$, since every nonzero element of $\mathbb{Z}/p\mathbb{Z}$ is a root! Since g has at most p-1-d roots and x^d-1 has at most d roots. Since a root of $(x^d-1)g(x)$ is a root of either x^d-1 or g(x) and $x^{p-1}-1$ has p-1 roots, g must have exactly p-1-d roots and x^d-1 must have exactly d roots, as claimed.

Lemma. Suppose $a, b \in (\mathbb{Z}/n\mathbb{Z})^*$ have orders r and s, respectively, and that gcd(r, s) = 1. Then ab has order rs.

Theorem (Primitive Roots). There is a primitive root modulo any prime p. In particular, the group $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

Example 1. We illustrate the proof of Theorem when p = 13. We have

$$p - 1 = 12 = 2^2 \cdot 3.$$

The polynomial x^4-1 has roots $\{1,5,8,12\}$ and x^2-1 has roots $\{1,12\}$, so we may take $a_1=5$. The polynomial x^3-1 has roots $\{1,3,9\}$, and we set $a_2=3$. Then $a=5\cdot 3=15\equiv 2$ is a primitive root. To verify this, note that the successive powers of $2\pmod{13}$ are

Example 2. Theorem is false if, for example, p is replaced by a power of 2 bigger than 4. For example, the four elements of $(\mathbb{Z}/8\mathbb{Z})^*$ each have order dividing 2, but $\varphi(8) = 4$.

Theorem (Primitive Roots mod p^n). Let p^n be a power of an odd prime. Then there is a primitive root modulo p^n .

Proposition (Number of Primitive Roots). *If there is a primitive root modulo* n, then there are exactly $\varphi(\varphi(n))$ primitive roots modulo n.

Proof. The primitive roots modulo n are the generators of $(\mathbb{Z}/n\mathbb{Z})^*$, which by assumption is cyclic of order $\varphi(n)$. Thus they are in bijection with the generators of any cyclic group of order $\varphi(n)$. In particular, the number of primitive roots modulo n is the same as the number of elements of $\mathbb{Z}/\varphi(n)\mathbb{Z}$ with additive order $\varphi(n)$. An element of $\mathbb{Z}/\varphi(n)\mathbb{Z}$ has additive order $\varphi(n)$ if and only if it is coprime to $\varphi(n)$. There are $\varphi(\varphi(n))$ such elements, as claimed.

Example 3. For example, there are $\varphi(\varphi(17)) = \varphi(16) = 2^4 - 2^3 = 8$ primitive roots mod 17, namely 3, 5, 6, 7, 10, 11, 12, 14. The $\varphi(\varphi(9)) = \varphi(6) = 2$ primitive roots modulo 9 are 2 and 5. There are no primitive roots modulo 8, even though $\varphi(\varphi(8)) = \varphi(4) = 2 > 0$.