Number theory and Cryptography

Lecture 3: The Ring of Integers Modulo n

May 14th, 2024

Instructor: Chao Qin Notes written by: Wenhao Tong and Yingshu Wang

Theorem (Chinese Remainder Theorem). Let a,b € Z and n,m € N such
that ged(n,m) = 1. Then there exists x € Z. such that

a (mod m),
b (mod n).

X

X

Moreover x is unique modulo mn.

Proof. If we can solve for ¢ in the equation
a+tm=>b (mod n),

then x = a + tm will satisfy both congruences. To see that we can solve,
subtract a from both sides and use Unit Proposition together with our as-
sumption that ged(n, m) = 1 to see that there is a solution.

For uniqueness, suppose that x and y solve both congruences. Then
z =x—y satisfiesz=0 (mod m) andz =0 (mod n),som | zand n | z. Since
ged(n, m) = 1, it follows that nm | z, sox =y (mod nm). |

Lemma. Suppose that m,n € N and ged(m,n) = 1. Then the map
v : (Z/mnZ)" — (Z|/mZ)* X (Z/nZ)". @

defined by
w(c) = (¢ mod m, ¢ mod n)

is a bijection.

Definition (Multiplicative Function). A function f : N — C is multiplica-
tive if, whenever m,n € N and gcd(m,n) = 1, we have

f(mn) = f(m) - f(n).

Proposition (Multiplicativity of ¢). The function ¢ is multiplicative.
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Proof. The map v of Lemma 1is a bijection, so the set on the left in (1) has
the same size as the product set on the right in (). Thus

p(mn) = p(m) - p(n).
O

Proposition (Extended Euclidean Representation). Suppose a,b € Z and
let g = ged(a, b). Then there exists x,y € Z. such that

ax+by=g.
Proof of Euclid Proposition. Let g = gcd(a,b). Then ged(a/g,b/g) = 1, so
by Solvability Proposition, the equation
9-x51(mod 9) (2)
8 8
has a solution x € Z. Multiplying (2) through by g yields ax = g (mod b), so
there exists y such that - (-y) = ax — g. Then ax + by = g, as required. O

Example 1. Suppose a =5 and b = 7. Here we underline certain numbers,
because it clarifies the subsequent back substitution we will use to find x
and y.

Ir—* Il\')
Ir—* Il\')

=7-5
=5-2-

IL\'J Icn

1-
2.

Jon |3

2=5-2(7-5=3-5-2-7

On the right, we have back-substituted in order to write each partial remain-
der as a linear combination of a and b. In the last step, we obtain ged(a,b)
as a linear combination of a and b, as desired.

Example 2. That example was not too complicated, so we try another one.
Let a =130 and b = 61. We have

130=2-61+8 8=130-2-61
61=7-8+5 5=-7-130+15-61
8=1-5+3 3=8-130-17-61
5=1-3+2 2=-15-130+32-61
3=1-2+1 1=23-130-49 61

Thus x = 23 and y = —49 is a solution to 130x + 61y = 1.
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Example 3. Solve 17x = 1 (mod 61). First, we use Euclid Algorithm to find
x,y such that 17x + 61y = 1:

61=3-17+10 10=61-3-17
17=1-10+7 T=-61+4-17
10=1-7+3 3=2.61-7-17
3=2.3+1 1=-5-61+18-17

Thus 17-18+61-(-5) =1so x = 18 is a solution to 17x =1 (mod 61).

Theorem (Pseudoprimality). An integer p > 1 is prime if and only if for
every a # 0 (mod p),
a?1=1 (mod p).

Proof. If p is prime, then the statement follows from Fetmat’s Little The-
orem. If p is composite, then there is a divisor a of p with 2 < a < p. If
a?! = 1 (mod p), then p | a1 — 1. Since a | p, we have a | a?1 -1,
hence there exists an integer % such that ak = a?~! — 1. Subtracting, we see
that a?~! — ak = 1, so a(a?~2 — k) = 1. This implies that « | 1, which is a
contradiction since a > 2. O

Example 4. Is p = 323 prime? We compute 23?2 (mod 323). Making a table
as above, we have

i m & 22 mod 323
0 322 0 2

1 161 1 4

2 80 0 16

3 40 0 256

4 20 0 290

5 10 0 120

6 5 1 188

7 2 0 137

8 1 1 35

Thus
2322 = 4.188-35=157 (mod 323),

so 323 is not prime, though this computation gives no information about how
323 factors as a product of primes. In fact, one finds that 323 = 17 - 19.



