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Definition (Group). A group is a set 𝐺 equipped with a binary operation
𝐺 ×𝐺 → 𝐺 (denoted by multiplication below) and an identity element 1 ∈ 𝐺
such that:

1. For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, we have (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐).

2. For each 𝑎 ∈ 𝐺, we have 1𝑎 = 𝑎1 = 𝑎, and there exists 𝑏 ∈ 𝐺 such that
𝑎𝑏 = 1.

Definition (Abelian Group). An abelian group is a group 𝐺 such that 𝑎𝑏 =
𝑏𝑎 for every 𝑎, 𝑏 ∈ 𝐺.

Definition (Ring). A ring 𝑅 is a set equipped with binary operations + and
× and elements 0, 1 ∈ 𝑅 such that 𝑅 is an abelian group under +, and for all
𝑎, 𝑏, 𝑐 ∈ 𝑅 we have

• 1𝑎 = 𝑎1 = 𝑎

• (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)

• 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐.

If, in addition, 𝑎𝑏 = 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝑅, then we call 𝑅 a commutative ring.

Definition (Integers Modulo 𝑛). The ring 𝑛 of integers modulo𝑛 is the set of
equivalence classes of integers modulo𝑛. It is equipped with its natural ring
structure:

(𝑎 + 𝑛ℤ) + (𝑏 + 𝑛ℤ) = (𝑎 + 𝑏) + 𝑛ℤ

(𝑎 + 𝑛ℤ) · (𝑏 + 𝑛ℤ) = (𝑎 · 𝑏) + 𝑛ℤ.

Example 1. For example,

𝑍/3𝑍 = {{. . . ,−3, 0, 3, . . .}, {. . . ,−2, 1, 4, . . .}, {. . . ,−1, 2, 5, . . .}}

1



Definition (Field). A 𝑓 𝑖𝑒𝑙𝑑 𝐾 is a ring such that for every nonzero element
𝑎 ∈ 𝐾 there is an element 𝑏 ∈ 𝐾 such that 𝑎𝑏 = 1.

For example, if 𝑝 is a prime, then 𝑝 is a field

Definition (Reduction Map and Lift). We call the natural reduction map
ℤ → 𝑛ℤ, which sends 𝑎 to 𝑎 + 𝑛𝑍, 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑚𝑜𝑑𝑢𝑙𝑜 𝑛. We also say that 𝑎 is
a 𝑙𝑖𝑓 𝑡 of 𝑎 + 𝑛ℤ. Thus, e.g., 7 is a lift of 1 mod 3, since 7 + 3ℤ = 1 + 3ℤ.

We can use that arithmetic in 𝑛 is well defined to derive tests for divisi-
bility by 𝑛

Theorem. A number 𝑛 ∈ ℤ is divisible by 3 if and only if the sum of the
digits of𝑛 is divisible by 3.

Theorem (Cancellation). If 𝑔𝑐𝑑(𝑐, 𝑛) = 1 and

𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑛),

then 𝑎 ≡ 𝑏 (mod 𝑛).

Proof. By definition
𝑛 | 𝑎𝑐 − 𝑏𝑐 = (𝑎 − 𝑏)𝑐.

Since gcd(𝑛, 𝑐) = 1, it follows from FTA that 𝑛 | 𝑎 − 𝑏, so

𝑎 ≡ 𝑏 (mod 𝑛),

as claimed. □

Definition (Complete Set of Residues). We call a subset 𝑅 ⊂ ℤ of size 𝑛
whose reductions modulo 𝑛 are pairwise distinct from a 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑠𝑒𝑡𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
modulo 𝑛. In other words, a complete set of residues is a choice of represen-
tative for each equivalence class in ℤ/𝑛ℤ.

Lemma. If 𝑅 is a complete set of residues modulo 𝑛 and 𝑎 ∈ 𝑍with gcd(𝑎, 𝑛) =
1, then 𝑎𝑅 = {𝑎𝑥 : 𝑥 ∈ 𝑅} is also a complete set of residues modulo 𝑛.

Theorem (Units). If gcd(𝑎, 𝑛) = 1, then the equation 𝑎𝑥 ≡ 𝑏 (mod 𝑛) has a
solution, and that solution is unique modulo 𝑛.

Proof. Let 𝑅 be a complete set of residues modulo 𝑛, so there is a unique
element of 𝑅 that is congruent to 𝑏 modulo 𝑛. By Lemma2.1.12, 𝑎𝑅 is also
a complete set of residues modulo 𝑛, so there is a unique element 𝑎𝑥 ∈ 𝑎𝑅
that is congruent to 𝑏 modulo 𝑛, and we have 𝑎𝑥 ≡ 𝑏 (mod 𝑛). □
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Theorem (Solvability). The equation 𝑎𝑥 ≡ 𝑏 (mod 𝑛) has a solution if and
only if gcd(𝑎, 𝑛) divides 𝑏.

Definition (Order of an Element). Let 𝑛 ∈ ℕ and 𝑥 ∈ ℤ and suppose that
gcd(𝑥, 𝑛) = 1. The order of 𝑥 modulo 𝑛 is the smallest 𝑚 ∈ ℕ such that

𝑥𝑚 ≡ 1 (mod 𝑛).

Definition (Euler’s 𝜑-function). For 𝑛 ∈ ℕ, let

𝜑(𝑛) = #{𝑎 ∈ 𝑁 : 𝑎 ≤ 𝑛 and gcd(𝑎, 𝑛) = 1}.

For example,

𝜑(1) = #{1} = 1,
𝜑(2) = #{1} = 1,
𝜑(5) = #{1, 2, 3, 4} = 4,

𝜑(12) = #{1, 5, 7, 11} = 4.

Theorem (Euler’s Theorem). If gcd(𝑥, 𝑛) = 1, then

𝑥𝜑(𝑛) ≡ 1 (mod 𝑛).

Theorem. An integer 𝑝 > 1 is prime if and only if (𝑝 − 1)! ≡ −1 (mod 𝑝).

For example, if 𝑝 = 3, then (𝑝 − 1)! = 2 ≡ −1 (mod 3). If 𝑝 = 17, then

(𝑝 − 1)! = 20922789888000 ≡ −1 (mod 17).

But if 𝑝 = 15, then

(𝑝 − 1)! = 87178291200 ≡ 0 (mod 15),

so 15 is composite. Thus Wilson’s theorem could be viewed as a primality
test, though, from a computational point of view, it is probably one of the
world’s least efficient primality tests since computing (𝑛 − 1)! takes so
many steps.
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