Number theory and Cryptography

May 9th, 2024

## Lecture 2: Congruences Modulo n

Instructor: Chao Qin

Notes written by: Wenhao Tong and Yingshu Wang

**Definition** (Group). A group is a set G equipped with a binary operation  $G \times G \to G$  (denoted by multiplication below) and an identity element  $1 \in G$  such that:

- 1. For all  $a, b, c \in G$ , we have (ab)c = a(bc).
- 2. For each  $a \in G$ , we have 1a = a1 = a, and there exists  $b \in G$  such that ab = 1.

**Definition** (Abelian Group). An abelian group is a group G such that ab = ba for every  $a, b \in G$ .

**Definition** (Ring). A ring R is a set equipped with binary operations + and  $\times$  and elements  $0, 1 \in R$  such that R is an abelian group under +, and for all  $a, b, c \in R$  we have

- 1a = a1 = a
- (ab)c = a(bc)
- a(b+c) = ab + ac.

If, in addition, ab = ba for all  $a, b \in R$ , then we call R a commutative ring.

**Definition** (Integers Modulo n). The ring n of integers modulo n is the set of equivalence classes of integers modulon. It is equipped with its natural ring structure:

$$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) = (a + b) + n\mathbb{Z}$$
$$(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) = (a \cdot b) + n\mathbb{Z}.$$

Example 1. For example,

$$Z/3Z = \{\{\ldots, -3, 0, 3, \ldots\}, \{\ldots, -2, 1, 4, \ldots\}, \{\ldots, -1, 2, 5, \ldots\}\}$$

**Definition** (Field). A field K is a ring such that for every nonzero element  $a \in K$  there is an element  $b \in K$  such that ab = 1.

For example, if p is a prime, then p is a field

**Definition** (Reduction Map and Lift). We call the natural reduction map  $\mathbb{Z} \to n\mathbb{Z}$ , which sends a to  $a + n\mathbb{Z}$ , reduction modulo n. We also say that a is a lift of  $a + n\mathbb{Z}$ . Thus, e.g., 7 is a lift of 1 mod 3, since  $7 + 3\mathbb{Z} = 1 + 3\mathbb{Z}$ .

We can use that arithmetic in n is well defined to derive tests for divisibility by n

**Theorem.** A number  $n \in \mathbb{Z}$  is divisible by 3 if and only if the sum of the digits of n is divisible by 3.

**Theorem** (Cancellation). *If* gcd(c, n) = 1 *and* 

$$ac \equiv bc \pmod{n}$$
,

then  $a \equiv b \pmod{n}$ .

Proof. By definition

$$n \mid ac - bc = (a - b)c$$
.

Since gcd(n, c) = 1, it follows from FTA that  $n \mid a - b$ , so

$$a \equiv b \pmod{n}$$
,

as claimed.

**Definition** (Complete Set of Residues). We call a subset  $R \subset \mathbb{Z}$  of size n whose reductions modulo n are pairwise distinct from a complete set of residues modulo n. In other words, a complete set of residues is a choice of representative for each equivalence class in  $\mathbb{Z}/n\mathbb{Z}$ .

**Lemma.** If R is a complete set of residues modulo n and  $a \in Z$  with gcd(a, n) = 1, then  $aR = \{ax : x \in R\}$  is also a complete set of residues modulo n.

**Theorem** (Units). If gcd(a, n) = 1, then the equation  $ax \equiv b \pmod{n}$  has a solution, and that solution is unique modulo n.

*Proof.* Let R be a complete set of residues modulo n, so there is a unique element of R that is congruent to b modulo n. By Lemma 2.1.12, aR is also a complete set of residues modulo n, so there is a unique element  $ax \in aR$  that is congruent to b modulo n, and we have  $ax \equiv b \pmod{n}$ .

**Theorem** (Solvability). The equation  $ax \equiv b \pmod{n}$  has a solution if and only if gcd(a, n) divides b.

**Definition** (Order of an Element). Let  $n \in \mathbb{N}$  and  $x \in \mathbb{Z}$  and suppose that gcd(x, n) = 1. The order of x modulo n is the smallest  $m \in \mathbb{N}$  such that

$$x^m \equiv 1 \pmod{n}$$
.

**Definition** (Euler's  $\varphi$ -function). For  $n \in \mathbb{N}$ , let

$$\varphi(n) = \#\{a \in N : a \le n \text{ and } \gcd(a, n) = 1\}.$$

For example,

$$\begin{split} \varphi(1) &= \#\{1\} = 1, \\ \varphi(2) &= \#\{1\} = 1, \\ \varphi(5) &= \#\{1, 2, 3, 4\} = 4, \\ \varphi(12) &= \#\{1, 5, 7, 11\} = 4. \end{split}$$

**Theorem** (Euler's Theorem). *If* gcd(x, n) = 1, *then* 

$$x^{\varphi(n)} \equiv 1 \pmod{n}$$
.

**Theorem.** An integer p > 1 is prime if and only if  $(p-1)! \equiv -1 \pmod{p}$ .

For example, if 
$$p = 3$$
, then  $(p - 1)! = 2 \equiv -1 \pmod{3}$ . If  $p = 17$ , then

$$(p-1)! = 20922789888000 \equiv -1 \pmod{17}$$
.

But if p = 15, then

$$(p-1)! = 87178291200 \equiv 0 \pmod{15}$$
,

so 15 is composite. Thus Wilson's theorem could be viewed as a primality test, though, from a computational point of view, it is probably one of the world's **least efficient** primality tests since computing (n-1)! takes so many steps.