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1 Applications of elliptic curves over finite fields
There are several factors that make elliptic curves over finite fields partic-
ularly well suited to practical applications:

• There are many groups available, even when the finite field is fixed.

• The underlying group operation can be made very efficient.

• here are techniques to construct a group of any desired size.

• The representation of group elements appears to be "opaque".

There are three particular applications that we will explore in some detail:

• factoring integers

• primality proving

• cryptography

In the next ten slides we will take a whirlwind tour of these applications.

1.1 Diffie-Hellman key exchange
Diffie and Hellman proposed a method for two parties to establish a secret
key over a public network, based on the discrete log problem. Their method
is generic, it works in a cyclic subgroup of any given group. Let 𝐸/𝔽𝑝 be an
elliptic curve with a point 𝑃 ∈ 𝐸(𝔽𝑝). Alice and Bob, who both know 𝐸 and
𝑃,establish a secret 𝑆 as follows:

1. Alice chooses a random integer 𝑎 and sends 𝑎𝑃 to Bob

2. Bob choses a random integer 𝑏 and sends 𝑏𝑃 to Alice.
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3. Alice computes 𝑎𝑏𝑃 = 𝑆 and Bob computes 𝑏𝑎𝑃 = 𝑆.

The coordinates of 𝑆 depend on the random integer 𝑎𝑏 and can be hashed
to yield a shared secret consisting of log2 𝑎𝑏 random bits.2
An eavesdropper may know 𝐸, 𝑃, 𝑎𝑃 and 𝑏𝑃,but not 𝑎, 𝑏,or 𝑆. It is believed
that computing 𝑆 from these values is as hard as computing discrete loga-
rithms in 𝐸(𝔽𝑝) (but this is not proven)

1.2 Ephemeral Diffie-Hellman (ECDHE)
With ephemeral Diffie-Hellman (ECDHE) the elliptic cunve 𝐸 is fixed, but
a new base point 𝑃 is chosen for each key exchange.
This provides what is known as perfect forward secrecy, which compart-
mentalizes the security of each communication session (breaking one ses-
sion should not make it easier to break others).
ECDHE was adopted by Google in late 2011 and is now used by essentially
all major internet sites to establish a secure session, including:
Amazon, Bing, Dropbox, Facebook, Flickr, GitHub, Instagram, LinkedIn,
MSN, Netflix, Pinterest, PirateBay, Quora, Snapchat, SoundCloud, Spotify,
StackOverflow, Tumblr, Twitter, Uber, Vimeo, Vine, Yahoo, Yelp, YouTube,
Wikipedia, Wordpress, ...

1.3 Pairing-based cryptography
Elliptic curves also support bilinear pairings 𝜀 : 𝐸(𝔽𝑝) ×𝐸(𝔽𝑝) → 𝔽

×
𝑝, which

satisfy 𝜀(𝑎𝑃, 𝑏𝑄) = 𝜀(𝑃, 𝑄)𝑎𝑏. Pairings facilitate some more sophisticated
cryptographic protocols

For suitably pairing friendly elliptic curves 𝐸/𝔽𝑝, one can define a pair-
ing 𝜀 : 𝐸(𝔽𝑝) × 𝐸(𝔽𝑝) → 𝔽𝑝𝑘 ,where #𝐸(𝔽𝑝) divides 𝑝𝑘 − 1 and 𝑘 is small.
As an example, here is how Alice, Bob, and Carol can establish a shared
secret using a single round of communication (as proposed by Joux).

1. Alice chooses a random 𝑎 and sends 𝑎𝑃 to Bob and Carol,
Bob chooses a random 𝑏 and sends 𝑏𝑃 to Alice and Carol,
Carol chooses a random 𝑐 and sends 𝑐𝑃 to Alice and Bob.

2. Alice computes 𝜀(𝑏𝑃, 𝑐𝑃)𝑎 = 𝜀(𝑃, 𝑃)𝑏𝑐𝑎 = 𝑆,
Bob computes 𝜀(𝑎𝑃, 𝑐𝑃)𝑏 = 𝜀(𝑃, 𝑃)𝑎𝑐𝑏 = 𝑆,
Carol computes 𝜀(𝑎𝑃, 𝑏𝑃)𝑐 = 𝜀(𝑃, 𝑃)𝑎𝑏𝑐 = 𝑆.
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An eavesdropper may know 𝐸, 𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃, but not 𝑎, 𝑏, 𝑐 or 𝑆.
Now the security of the system depends both on the difficulty of the dis-

crete log problem in 𝐸(𝔽𝑝),and the discrete log problem in 𝔽𝑝𝑘 .

The complexity of the discrete log problem in 𝐸(𝔽𝑝) is believed to be Ω(√𝑝),
whereas the fastest known algorithm for computing discrete logarithms in
𝔽𝑝𝑘 has complexity

𝐿[1/3, 𝑐] = exp
(
(𝑐 + 𝑜(1)) (log 𝑛)1/3(log log 𝑛)2/3) ,

where 𝑛 = 𝑝𝑘 and 𝑐 is a constant that may be as small as about 1.4 (for
binary fields).
If 𝑝 ≈ 2256 and 𝑘 = 12, then 𝑝𝑘 ≈ 23072 and the two complexities are roughly
comparable.

1.4 Quantum security
Both factoring and the discrete logarithm problem can be solved in polynomial-
time on a quantum computer.
SIDH is a variant of the Diffie Hellman protocol that replaces scalar mul-
tiplication with a walk on a supersingular isogeny graph:
Alice and Bob, who both know a supersingular elliptic curve 𝐸/𝔽𝑝2 ,establish
a secret 𝑆 as follows:

1. Alice chooses a random 𝑎 encoded in base-2 and computes 𝐸𝑎 by taking
an 𝑎-walk in the 2-isogeny graph; she sends 𝐸𝑎 to Bob.3

2. Bob choses a random 𝑏 encoded in base-3 and computes 𝐸𝑏 by taking
a 𝑏-walk in the 3-isogeny graph; he sends 𝐸𝑏 to Alice.4

3. Alice computes (𝐸𝑏)𝑎 and Bob computes (𝐸𝑎)𝑏. The 𝑗-invariant 𝑗((𝐸𝑏)𝑎) =
𝑗((𝐸𝑎)𝑏) ∈ 𝔽𝑝2 is their shared secret 𝑆.

No efficient algorithm is known for computing 𝑗((𝐸𝑏)𝑎) = 𝑗((𝐸𝑎)𝑏) given
𝐸, 𝐸𝑎, 𝐸𝑏, ¯not even on an quantum computer.

2 What Does 𝐸(𝐾) Look Like?
theorem 1. (Mordell, 1922) Let 𝐸 be an elliptic curve given by an equation

𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 with 𝐴, 𝐵 ∈ ℚ.
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Then the group of rational points 𝐸(ℚ) is a finitely generated abelian group.
In other words, there is a finite set of points 𝑃1, . . . , 𝑃𝑡 ∈ 𝐸(ℚ) so that every
point 𝑃 ∈ 𝐸(ℚ) can be written in the form

𝑃 = 𝑛1𝑃1 + 𝑛2𝑃2 + · · · + 𝑛𝑡𝑃𝑡

for some 𝑛1, 𝑛2, . . . , 𝑛𝑡 ∈ ℤ.

A standard theorem about finitely generated abelian groups tells us that
𝐸(ℚ) looks like

𝐸(ℚ) � (Finite Group) × ℤ × ℤ × · · · × ℤ︸              ︷︷              ︸
𝑟 copies

.

𝐸(ℚ) � 𝐸(ℚ)tors × ℤ × ℤ × · · · × ℤ︸              ︷︷              ︸
𝑟 copies

.

The finite group 𝐸(ℚ)tors is called the Torsion Subgroup of 𝐸(ℚ).
The integer 𝑟 is called the Rank of 𝐸(ℚ).
The description of all possible torsion subgroups for 𝐸(ℚ) is very easy, al-
though the proof is extremely difficult.

theorem 2. (Mazur, 1977) The torsion subgroup of the group of rational
points 𝐸(ℚ) on an elliptic curve must be one of the following 15 groups:

𝐶𝑁 with 1 ≤ 𝑁 ≤ 10 or 𝑁 = 12,

𝐶2 × 𝐶2𝑁 with 1 ≤ 𝑁 ≤ 4.

In particular, 𝐸(ℚ)𝑡𝑜𝑟𝑠 has order at most 16.

The rank is a far more mysterious quantity, although there is a folklore
conjecture.
Conjecture. There exist elliptic curve groups 𝐸(ℚ) of arbitrarily large rank.

The evidence for this conjecture is fragmentary at best. An example of
rank at least 24 (Martin-McMillen 2000):

𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 − 120039822036992245303534619191166796374𝑥
+ 504224992484910670010801799168082726759443756222911415116
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And here is the only example known of higher rank. It has rank at least 28
(Elkies 2006):

𝑦2+𝑥𝑦+𝑦 = 𝑥3−20067762415575526585033208209338542750930230312178956502𝑥
+34481611795030556467032985690390720374855944359319180361266008296291939448732243429
Slightly more convincing is the fact that there do exist elliptic curves with
coefficients in the field 𝔽𝑝(𝑇) such that the rank of 𝐸(𝔽𝑝(𝑇)) is arbitrarily
large.

The ring ℤ is not a field, so the set

𝐸(ℤ) = {(𝑥, 𝑦) ∈ 𝐸(ℚ) : 𝑥, 𝑦 ∈ ℤ} ∪ {O}

is usually not a subgroup of 𝐸(ℚ).
Indeed, even if 𝑃1 and 𝑃2 have integer coordinates, the formula for 𝑃1 + 𝑃2
is so complicated, it seems unlikely that the point 𝑃1 + 𝑃2 will have integer
coordinates.
Complementing Mordell’s Theorem describing 𝐸(ℚ) is a famous finiteness
result for 𝐸(ℤ).

theorem 3. (Siegel, 1928) Let 𝐸 be an elliptic curve given by an equation

𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 with 𝐴, 𝐵 ∈ ℤ.

Then 𝐸 has only fnitely many points 𝑃 = (𝑥, 𝑦) with integer coordinates 𝑥, 𝑦 ∈
ℤ, i.e., 𝐸(ℤ) is a fnite set.

Siegel actually proves something much stronger.
For each point 𝑃 ∈ 𝐸(ℚ), write

𝑥(𝑃) = 𝑎(𝑃)
𝑏(𝑃) ∈ ℚ as a fraction in lowest terms.

theorem 4. (Siegel, 1928)

lim
𝑃∈𝐸(ℚ)

max{|𝑎(𝑃) |, |𝑏(𝑃) |}→∞

log |𝑎(𝑃) |
log |𝑏(𝑃) | = 1.

Roughly speaking, Siegel’s result says that the numerator and the de-
nominator of 𝑥(𝑃) tend to have approximately the same number of digits.

The group 𝐸(𝔽𝑝) is obviously a finite group. Indeed, it clearly has no
more than 2𝑝 + 1 points.
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For each 𝑥 ∈ 𝔽𝑝, there is a“50
Thus we might expect 𝐸(𝔽𝑝) to contain approximately

#𝐸(𝔽𝑝) ≈
1
2 · 2 · 𝑝 + 1 = 𝑝 + 1 points

A famous theorem of Hasse makes this precise:

theorem 5. (Hasse, 1922) Let 𝐸 be an elliptic curve

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 with 𝐴, 𝐵 ∈ 𝔽𝑝.

Then ��#𝐸(𝔽𝑝) − (𝑝 + 1)
�� ≤ 2√𝑝.

3 Elliptic Curves Over Finite Fields

3.1 The Order of the Group 𝐸(𝔽𝑝))
The Frobenius Map is the function

𝜏𝑝 : 𝐸(𝔽̄𝑝) −→ 𝐸(𝔽̄𝑝), 𝜏𝑝(𝑥, 𝑦) = (𝑥𝑝, 𝑦𝑝).

One can check that 𝜏𝑝 is a group homomorphism
The quantity

𝑎𝑝 = 𝑝 + 1 − #𝐸(𝔽𝑝)

is called the Trace of Frobinius, because one way to calculate it is to use
the Frobenius map to get a linear transformation on a certain vector space
𝑉ℓ (𝐸). Then 𝑎𝑝 is the trace of that linear transformation.
Hasse’s Theorem says that

|𝑎𝑝 | ≤ 2√𝑝.

For cryptography, we need 𝐸(𝔽𝑝) to contain a subgroup of large prime order.
How does #𝐸(𝔽𝑝) vary for different 𝐸?

3.2 The Distribution of the Trace of Frobenius
There are approximately 2𝑝 different elliptic curves defined over 𝔽𝑝.

If the 𝑎𝑝(𝐸) values for different 𝐸 were uniformly distributed in the interval
from −2√𝑝 to 2√𝑝 then we would expect each value to appear approximately
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1
2
√
𝑝 times.

This is not quite true, but it is true that the values 𝑎𝑝 between (say)−√𝑝 and√
𝑝 appear quite frequently The precise statement says that the 𝑎𝑝 values

follow a Sato-Tate distribution:

theorem 6. (Birch)

#
{
𝐸/𝔽𝑝 : 𝛼 ≤ 𝑎𝑝(𝐸) ≤ 𝛽

}
≈ 1

𝜋

∫ 𝛽

𝛼

√︃
4𝑝 − 𝑡2𝑑𝑡.

3.3 The Group of Points on 𝐸 with Coordinates in a
Field 𝐾

The elementary observation on the previous slide leads to the important
result that points with coordinates in a particular field form a subgroup of
the full set of points.

theorem 7 ( Poincareé, ≈ 1900). Let 𝐾 be a field and suppose that an elliptic
curve 𝐸 is given by an equation of the form

𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 with 𝐴, 𝐵 ∈ 𝐾.

Let 𝐸(𝐾) denote the set of points of 𝐸 with coordinates in 𝐾 ,

𝐸(𝐾) = {(𝑥, 𝑦) ∈ 𝐸 : 𝑥, 𝑦 ∈ 𝐾} ∪ {O}.

Then 𝐸(𝐾) is a subgroup of the group of all points of 𝐸.

4 The 𝐿-Series of an Elliptic Curve
Let 𝐸 be an elliptic curve given as usual by an equation

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 with 𝐴, 𝐵 ∈ ℤ.

For each prime 𝑝, we can reduce 𝐸 modulo 𝑝,count its points, and compute
the trace of Frobenius:

𝑎𝑝 = 𝑝 + 1 − #𝐸̃(𝔽𝑝).
The 𝐿- Series of 𝐸 encodes all of the 𝑎𝑝 values into a singlefunction:

𝐿(𝐸, 𝑠) =
∏

𝑝 prime

(
1 −

𝑎𝑝

𝑝𝑠
+ 1
𝑝2𝑠−1

)−1
.
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The variable 𝑠 is a complex variable 𝑠 ∈ ℂ. Using Hasse’s estimate |𝑎𝑝 | ≤
2√𝑝, it is easy to prove that the product defining 𝐿(𝐸, 𝑠) converges for Re(𝑠) >
3
2 .

4.1 The Analytic Continuation of 𝐿(𝐸, 𝑠)
theorem 8. (Wiles’ Theorem) The function 𝐿(𝐸, 𝑠) extends to an analytic
function on all of ℂ. Further, there is an integer 𝑁 (the Conductor of 𝐸) so
that the function

𝜉(𝐸, 𝑠) = 𝑁𝑠/2(2𝜋)−𝑠Γ(𝑠)𝐿(𝐸, 𝑠)

satisfies the functional equation

𝜉(𝐸, 2 − 𝑠) = ±𝜉(𝐸, 𝑠).

A more precise form of Wiles Theorem says to write

𝐿(𝐸, 𝑠) =
∞∑︁
𝑛=1

𝑎𝑛

𝑛𝑠
and set 𝑓 (𝐸, 𝜏) =

∞∑︁
𝑛=1

𝑎𝑛𝑒
2𝜋𝑖𝑛𝜏 .

Then 𝑓 (𝐸, 𝜏) is a modular form (weight 2 cusp form) for Γ0(𝑁). This state-
ment combined with ideas of Frey and Serre and a theorem of Ribet are
used to prove Fermat’s I ast Theorem

4.2 The Behavior of 𝐿(𝐸, 𝑠) Near 𝑠 = 1
It is a truth universally acknowledged that 𝐿-series satisfying a functional
equation have interesting behavior at the center of their critical strip. For
elliptic curves,this is at the point 𝑠 = 1.A formal (and completely unjustified)
calculation yields

𝐿(𝐸, 1) =
∏
𝑝

(
1 −

𝑎𝑝

𝑝
+ 1
𝑝

)−1
=
∏
𝑝

𝑝

#𝐸(𝔽𝑝)
.

Thich suggests that if #𝐸(𝔽𝑝) is large, then 𝐿(𝐸, 1) = 0.Birch and Swinnerton-
Dyce observed that if 𝐸(ℚ) is infinite, then the reduction of the points in
𝐸(ℚ) tend to make #𝐸(𝔽𝑝) larger than usual. So they conjectured

𝐿(𝐸, 1) = 0 if and only if #𝐸(ℚ) = ∞.
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4.3 The Conjecture of Birch and Swinnerton-Dyer
More generally, as the group 𝐸(ℚ) gets“larger”, the size of#𝐸(𝔽𝑝) seems to
get larger, too.
Birch-Swinnerton-Dyer Conjecture.

ord𝑠=1 𝐿(𝐸, 𝑠) = rank𝐸(ℚ).

This amazing conjecture says that the order of vanishing of the function
𝐿(𝐸, 𝑠), which recall is created entirely from information about the ellip-
tic curve modulo various primes 𝑝, governs how many rational points are
needed to generate the full group 𝐸(ℚ).
The BSwD conjecture is one of the Clay Millenium Problems, so its solution
is worth 1,000,000.
There is a refined conjecture 𝐿(𝐸, 𝑠) ∼ 𝑐(𝑠 − 1)𝑟 . The constant 𝑐 depends,
among other things, on the elliptic regulator R𝐸 .
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