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Lecture 11 : Introduction to Elliptic Curves
Instructor: Chao Qin Notes written by: Wenhao Tong and Yingshu Wang

1 What is an elliptic curve?

The equation 𝑥2

𝑎2 + 𝑦2

𝑏2 = 1 defines an ellipse.

An ellipse,like all conic sections, is a curve of genus 0.
It is not an elliptic curve. Elliptic curves have genus 1.
The area of this ellipse is 𝜋𝑎𝑏. What is its circumference?

1.1 The circumference of an ellipse
Let 𝑦 = 𝑓 (𝑥) = 𝑏

√︁
1 − 𝑥2/𝑎2.

Then 𝑓 ′(𝑥) = −𝑟𝑥/
√
𝑎2 − 𝑥2,where 𝑟 = 𝑏/𝑎 < 1.

Applying the arc length formula, the circumference is

4
∫ 𝑎

0

√︃
1 + 𝑓 ′(𝑥)2 𝑑𝑥 = 4

∫ 𝑎

0

√︃
1 + 𝑟2𝑥2/(𝑎2 − 𝑥2) 𝑑𝑥

With the substitution 𝑥 = 𝑎𝑡 this becomes

4𝑎
∫ 1

0

√︄
1 − 𝑒2𝑡2
1 − 𝑡2

𝑑𝑡,
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where 𝑒 =
√

1 − 𝑟2 is the eccentricity of the ellipse.
This is an elliptic integral. The integrand 𝑢(𝑡) satisfies

𝑢2(1 − 𝑡2) = 1 − 𝑒2𝑡2.

This equation defines an elliptic curve.

1.2 An elliptic curve over the real numbers
With a suitable change of variables, every elliptic curve with real coeffi-
cients can be put in the standard form

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵,

for some constants 𝐴 and 𝐵. Below is an example of such a curve.

𝑦2 = 𝑥3 − 4𝑥 + 6

over ℝ
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1.3 An elliptic curve over a finite field

𝑦2 = 𝑥3 − 4𝑥 + 6

over 𝔽197
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1.4 An elliptic curve over the complex numbers

An elliptic curve over C is a compact manifold of the form C/𝐿,
where 𝐿 = ℤ + 𝜔ℤ is a lattice in the complex plane.

Definition. An elliptic curve is a smooth projective curve of genus 1 with a
distinguished point.

Definition (more precise). An elliptic curve (over a field 𝑘) is a smooth pro-
jective curve of genus 1 (defined over 𝑘) with a distinguished (𝑘-rational)
point.

Not every smooth projective curve of genus 1 corresponds to an elliptic
curve, it needs to have at least one rational point!
For example, the (desingularization of) the curve defined by 𝑦2 = −𝑥4 − 1 is
a smooth projective curve of genus 1 with no rational points.

1.5 Genus
Over ℂ, an irreducible projective curve is a connected compact manifold of
dimension one. Topologically, it is a sphere with handles.The number of
handles is the genus.
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In fact, the genus can be defined algebraically over any field, not just ℂ.

1.6 Weierstrass equations
Let 𝐴, 𝐵 ∈ 𝑘 with 4𝐴3 + 27𝐵2 ≠ 0,and assume char(𝑘) ≠ 2, 3.
The (short/narrow) Weierstrass equation 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 defines a smooth
projective genus 1 curve over 𝑘 with the rational point (0:1:0).

In other words, an elliptic curve!
Up to isomorphism, every elliptic curve over 𝑘 can be defined this way. The
general Weierstrass equation

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥
3 + 𝑎2𝑥

2 + 𝑎4𝑥 + 𝑎6

works over any field, including those of characteristic 2 and 3

1.7 The elliptic curve group law
Three points on a line sum to zero.

Zero is the point at infinity.
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1.8 The elliptic curve group law
With addition defined as above, the set 𝐸(𝑘) becomes an abelian group.

• The point (0:1:0) at infinity is the identity element 0.

• The inverse of 𝑃 = (𝑥 : 𝑦 : 𝑧) is the point −𝑃 = (𝑥 : −𝑦 : 𝑧).

• Commutativity is obvious: 𝑃 + 𝑄 = 𝑄 + 𝑃.

• Associativity is not so obvious: 𝑃 + (𝑄 + 𝑅) = (𝑃 + 𝑄) + 𝑅.

The computation of 𝑃 + 𝑄 = 𝑅 is purely algebraic. The coordinates of 𝑅 are
rational functions of the coordinates of 𝑃 and 𝑄,and can be computed over
any field.
By adding a point to itself repeatedly, we can compute 2𝑃 = 𝑃 + 𝑃, 3𝑃 =

𝑃 + 𝑃 + 𝑃,and in general,𝑛𝑃 = 𝑃 + · · · + 𝑃 for any positive 𝑛.
We also define 0𝑃 = 0 and (−𝑛)𝑃 = −𝑛𝑃.
Thus we can perform scalar multiplication by any integer 𝑛.

1.9 The group E(k)
When 𝑘 = ℂ,the group operation on 𝐸(ℂ) ≃ ℂ/𝐿 is just addition of complex
numbers, modulo the lattice 𝐿.
When 𝑘 = ℚ things get much more interesting. The group 𝐸(ℚ) may be
finite or infinite, but in every case it is finitely generated.

theorem 1 (Mordell 1922). The group 𝐸(ℚ) is a finitely generated abelian
group. Thus

𝐸(ℚ) ≃ 𝑇 ⊕ ℤ𝑟,

6



where the torsion subgroup T is a finite abelian group corresponding to the
elements of 𝐸(ℚ) with finite order, and 𝑟 is the rank of 𝐸(ℚ).

It may happen (and often does) that 𝑟 = 0 and 𝑇 is the trivial group. In
this case the only element of 𝐸(ℚ) is the point at infinity.

1.10 The group E(ℚ)
The torsion subgroup of E(ℚ) is well understood.

theorem 2 (Mazur 1977). The torsion subgroup of 𝐸(ℚ) is isomorphic to one
of the following.

ℤ/𝑛ℤ or ℤ/2ℤ ⊕ ℤ/2𝑚ℤ,

where 𝑛 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} and 𝑚 ∈ {1, 2, 3, 4}.

1.11 The ranks of elliptic curves over ℚ

The rank 𝑟 of 𝐸(ℚ) is not well understood. Here are some of the things we
do not know about 𝑟 :

1. Is there an algorithm that is guaranteed to compute 𝑟?

2. Which values of 𝑟 can occur?

3. How often does each possible value of 𝑟 occur, on average?

4. Is there an upper limit, or can 𝑟 be arbitrarily large?

We do know a few things about 𝑟. We can compute 𝑟 in most cases where
𝑟 is small. When 𝑟 is large often the best we can do is a lower bound; the
largest example is a curve with 𝑟 ≥ 28 due to Elkies (2006).

1.12 The ranks of elliptic curves over ℚ

The most significant thing we know about 𝑟 is a bound on its average value
over all elliptic curves (suitably ordered).

theorem 3 (Bhargava, Shankar 2010-2012). The average rank of all elliptic
curves over ℚ is less than 1.
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In fact we now know the average rank is greater than 0.2 and less than
0.9; it is believed to be exactly 1/2 (half rank 0,half rank 1).
Manjul Bhargava received the Fields Medal in 2016 for the work that led to
this theorem (and which has many other applications).

1.13 The group E(𝔽𝑝)
Over a finite field 𝔽𝑝, the group 𝐸(𝔽𝑝) is necessarily finite.
On average, the size of the group is 𝑝 + 1, but it varies, depending on 𝐸.
The following theorem of Hasse was originally conjectured by Emil Artin.

theorem 4 (Hasse 1933). The cardinality of 𝐸(𝔽𝑝) satisfies #𝐸(𝔽𝑝) = 𝑝+1−
𝑡, 𝑤𝑖𝑡ℎ|𝑡 | ≤ 2√𝑝.

The fact that 𝐸(𝔽𝑝) is a group whose size is not fixed by 𝑝 is unique to
genus 1 curves. This is the basis of many useful applications.
For curves 𝐶 of genus 𝑔 = 0, we always have #𝐶(𝔽𝑝) = 𝑝 + 1.
For curves 𝐶 of genus 𝑔 > 1, the set 𝐶(𝔽𝑝) does not form a group.

1.14 Reducing elliptic curves over ℚ modulo 𝑝

Let 𝐸/ℚ be an elliptic curve defined by 𝑦2 = 𝑥3 + 𝐴𝑥 +𝐵 ,and let 𝑝 be a prime
that does not divide the discriminant Δ(𝐸) = −16(4𝐴3 + 27𝐵2).
The elliptic curve 𝐸 is then said to have good reduction at 𝑝.
If we reduce 𝐴 and 𝐵 modulo 𝑝, we obtain an elliptic curve 𝐸𝑝 := 𝐸 mod 𝑝

defined over the finite field 𝔽𝑝 ≃ ℤ/𝑝ℤ.
Thus from a single curve 𝐸/ℚ we get an infinite family of curves, one for
each prime 𝑝 where 𝐸 has good reduction.
Now we may ask, how does #𝐸𝑝(𝔽𝑝) vary with 𝑝?
We know #𝐸𝑝(𝔽𝑝) = 𝑝 + 1 − 𝑎𝑝 for some integer 𝑎𝑝 with |𝑎𝑝 | ≤ 2√𝑝.
So let 𝑥𝑝 := 𝑎𝑝/

√
𝑝. Then 𝑥𝑝 is a real number in the interval [-2,2].

What is the distribution of 𝑥𝑝 as 𝑝 varies?
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1.15 The Birch and Swinnerton-Dyer conjecture
Based on extensive computer experiments (back in the 1960s!),
Bryan Birch and Pet, ter Swinnerton-Dyer made the following conjecture

Let𝐸/ℚ be an elliptic curve with rank 𝑟. Then

𝐿(𝐸, 𝑠) = (𝑠 − 1)𝑟𝑔(𝑠),

for some complex analytic function 𝑔(𝑠) with 𝑔(1) ≠ 0,∞. In other words, 𝑟
is equal to the order of vanishing of 𝐿(𝐸, 𝑠) at 1.
They later made a more precise conjecture that also specifies the constant
coefficient 𝑎0 of 𝑔(𝑠) = ∑

𝑛≥0 𝑎𝑛(𝑠 − 1)𝑛.

1.16 Fermat’s Last Theorem
theorem 5 (Wiles et al. 1995). 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no positive integer solutions
for 𝑛 > 2.
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It suffices to consider 𝑛 prime.
Suppose 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 with 𝑎, 𝑏, 𝑐 > 0 and 𝑛 > 3 (the case 𝑛 = 3 was proved by
Euler). Consider the elliptic curve 𝐸𝑎,𝑏,𝑐/ℚ defined by

𝑦2 = 𝑥(𝑥 − 𝑎𝑛) (𝑥 − 𝑏𝑛).

Serre and Ribet proved that 𝐸𝑎,𝑏,𝑐 is not modular.
Wiles (with assistance from Taylor) proved that every semistable elliptic
curve over ℚ, including 𝐸,is modular. Fermat’s Last Theorem follows. We
now know that all elliptic curves 𝐸/ℚ are modular.

2 The Geometry of Elliptic Curves
The Elliptic Curve 𝐸 : 𝑦2 = 𝑥3 − 5𝑥 + 8

Adding Points on an Elliptic Curve
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Start with two points P and Q on E.

Draw the line L through P and Q.
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The line L intersects the cubic curve E in a third point. Call that third
point R.

Draw the vertical line through R.It hits E in another point.
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We define the sum of 𝑃 and 𝑄 on 𝐸 to be the reflected point.We denote
it by 𝑃 ⊕ 𝑄 or just 𝑃 + 𝑄.

Adding a Point To Itself on an Elliptic Curve

If we think of adding 𝑃 to 𝑄 and let 𝑄 approach 𝑃, then the line L be-
comes the tangent line to 𝐸 at 𝑃.
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Then we take the third intersection point 𝑅, reflect across the 𝑥-axis,
and call the resulting point

𝑃 ⊕ 𝑃 or 2𝑃.

Vertical Lines and the Extra Point “At Infinity”

Let 𝑃 ∈ 𝐸. We denote the reflected point by −𝑃.
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Big Problem: The vertical line 𝐿 through 𝑃 and −𝑃 does not intersect 𝐸
in a third point! And we need a third point to define 𝑃 ⊕ (−𝑃).

Solution: Since there is no point in the plane that works, we create an
extra point O “at infinity.”

Rule: O is a point on every vertical line.
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3 The Algebra of Elliptic Curves

3.1 A Numerical Example

𝐸 : 𝑦2 = 𝑥3 − 5𝑥 + 8

The point 𝑃 = (1, 2) is on the curve 𝐸.
Using the tangent line construction, we find that

2𝑃 = 𝑃 + 𝑃 =

(
−7

4 ,−
27
8

)
.

Let 𝑄 =

(
−7

4 ,−
27
8

)
. Using the secant line construction, we find that

3𝑃 = 𝑃 + 𝑄 =

(
553
121 ,−

11950
1331

)
.

Similarly,
4𝑃 =

(
45313
11664 ,−

8655103
1259712

)
.

As you can see, the coordinates are getting very large.

3.2 Formulas for Addition on 𝐸

Suppose that we want to add the points

𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2)

on the elliptic curve
𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵.

Let the line connecting 𝑃 to 𝑄 be

𝐿 : 𝑦 = 𝜆𝑥 + 𝜈

Explicitly, the slope and 𝑦-intercept of 𝐿 are given by

𝜆 =


𝑦2 − 𝑦1
𝑥2 − 𝑥1

if 𝑃1 ≠ 𝑃2

3𝑥2
1 + 𝐴
2𝑦1

if 𝑃1 = 𝑃2
and 𝜈 = 𝑦1 − 𝜆𝑥1.
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We find the intersection of

𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 and 𝐿 : 𝑦 = 𝜆𝑥 + 𝜈

by solving
(𝜆𝑥 + 𝜈)2 = 𝑥3 + 𝐴𝑥 + 𝐵.

We already know that 𝑥1 and 𝑥2 are solutions, so we can find the third so-
lution 𝑥3 by comparing the two sides of

𝑥3 + 𝐴𝑥 + 𝐵 − (𝜆𝑥 + 𝜈)2

= (𝑥 − 𝑥1) (𝑥 − 𝑥2) (𝑥 − 𝑥3)
= 𝑥3 − (𝑥1 + 𝑥2 + 𝑥3)𝑥2 + (𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3)𝑥 − 𝑥1𝑥2𝑥3.

Equating the coefficients of 𝑥2, for example, gives
−𝜆2 = −𝑥1 − 𝑥2 − 𝑥3, and hence 𝑥3 = 𝜆2 − 𝑥1 − 𝑥2.

Then we compute 𝑦3 using 𝑦3 = 𝜆𝑥3 + 𝜈, and finally

𝑃1 + 𝑃2 = (𝑥3,−𝑦3).

Addition algorithm for 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2) on the elliptic curve
𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵

• If 𝑃1 ≠ 𝑃2 and 𝑥1 = 𝑥2, then𝑃1 + 𝑃2 = O.

• If 𝑃1 = 𝑃2 and 𝑦1 = 0,then 𝑃1 + 𝑃2 = 2𝑃1 = O.

• If 𝑃1 ≠ 𝑃2 (and 𝑥1 ≠ 𝑥2),
let 𝜆 =

𝑦2−𝑦1
𝑥2−𝑥1

and 𝜈 =
𝑦1𝑥2−𝑦2𝑥1
𝑥2−𝑥1

.

• If 𝑃1 = 𝑃2(and 𝑦1 ≠ 0),
let 𝜆 =

3𝑥2
1+𝐴

2𝑦1
and 𝜈 = −𝑥3+𝐴𝑥+2𝐵

2𝑦 .

Then 𝑃1 + 𝑃2 = (𝜆2 − 𝑥1 − 𝑥2,−𝜆3 + 𝜆(𝑥1 + 𝑥2) − 𝜈).
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3.3 An Observation About the Addition Formulas
The addition formulas look complicated, but for example, if 𝑃1 = (𝑥1, 𝑦1)
and 𝑃2 = (𝑥2, 𝑦2) are distinct points, then

𝑥(𝑃1 + 𝑃2) =
(
𝑦2 − 𝑦1
𝑥2 − 𝑥1

)2
− 𝑥1 − 𝑥2,

and if 𝑃 = (𝑥, 𝑦) is any point, then

𝑥(2𝑃) = 𝑥4 − 2𝐴𝑥2 − 8𝐵𝑥 + 𝐴2

4(𝑥3 + 𝐴𝑥 + 𝐵)
.

Important Observation: If 𝐴 and 𝐵 are in a field K and if 𝑃1 and 𝑃2 have
coordinates in 𝐾 , then 𝑃1 + 𝑃2 and 2𝑃1 also have coordinates in 𝐾 .

3.4 The Group of Points on 𝐸 with Coordinates in a
Field 𝐾

The elementary observation on the previous slide leads to the important
result that points with coordinates in a particular field form a subgroup of
the full set of points.

theorem 6 ( Poincareé, ≈ 1900). Let 𝐾 be a field and suppose that an elliptic
curve 𝐸 is given by an equation of the form

𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 with 𝐴, 𝐵 ∈ 𝐾.

Let 𝐸(𝐾) denote the set of points of 𝐸 with coordinates in 𝐾 ,

𝐸(𝐾) = {(𝑥, 𝑦) ∈ 𝐸 : 𝑥, 𝑦 ∈ 𝐾} ∪ {O}.

Then 𝐸(𝐾) is a subgroup of the group of all points of 𝐸.

3.5 A Finite Field Example
The formulas giving the group law on 𝐸 are valid if the points have coor-
dinates in any field, even if the geometric pictures don’t make sense. For
example, we can take points with coordinates in 𝔽𝑝.
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Example 1. The curve

𝐸 : 𝑦2 = 𝑥3 − 5𝑥 + 8 (mod 37)

contains the points

𝑃 = (6, 3) ∈ 𝐸(𝔽37) and 𝑄 = (9, 10) ∈ 𝐸(𝔽37).

Using the addition formulas, we can compute in 𝐸(𝔽37) :
2P=(35,11), 3P=(34,25),
4P=(8,6), 5P=(16,19),. . .
P+ Q= ( 11, 10) , . . .
3P+4Q=(31,28),....
Substituting in each possible value 𝑥 = 0, 1, 2, . . . , 36 and checking if 𝑥3−5𝑥+8
is a square modulo 37,we find that 𝐸(𝔽̄37) consists of the following 45 points
modulo 37:
(1,±2), (5,±21), (6,±3), (8,±6), (9,±27), (10,±25),
(11,±27), (12,±23), (16,±19), (17,±27), (19,±1), (20,±8)
(21,±5), (22,±1), (26,±8), (28,±8), (30,±25), (31,±9),
(33,±1), (34,±25), (35,±26), (36,±7),O.

There are nine points of order dividing three, so as an abstract group,

𝐸(𝔽37) � 𝐶3 × 𝐶15.

theorem 7. Working over a finite field, the group of points 𝐸(𝔽𝑝) is always
either a cyclic group or the product of two cyclic groups.

3.6 Computing Large Multiples of a Point
To use the finite group 𝐸(𝔽𝑝) for Diffie-Hellman, say,we need 𝑝 to be quite
large (𝑝 > 2160) and we need to compute multiples

𝑚𝑃 = 𝑃 + 𝑃 + · · · + 𝑃︸             ︷︷             ︸
𝑚 times

∈ 𝐸(𝔽𝑝)

for very large values of 𝑚.
We can compute𝑚𝑃 in𝑂(log𝑚) steps by the usual Double- and- Add Method.
First write

𝑚 = 𝑚0 + 𝑚1 · 2 + 𝑚2 · 22 + · · · + 𝑚𝑟 · 2𝑟with 𝑚0, . . . , 𝑚𝑟 ∈ {0, 1}.
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Then 𝑚𝑃 can be computed as

𝑚𝑃 = 𝑚0𝑃 + 𝑚1 · 2𝑃 + 𝑚2 · 22𝑃 + · · · + 𝑚𝑟 · 2𝑟𝑃,

where 2𝑘𝑃 = 2 · 2 · · · 2𝑃 requires only 𝑘 doublings.
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