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Lecture 10: Sums of Two Squares, Sum of Four Squares
Instructor: Chao Qin Notes written by: Wenhao Tong and Yingshu Wang

1 Quadratic Irrationals
Definition (Quadratic Irrational). A quadratic irrational is a real number
𝛼 ∈ ℝ that is irrational and satisfies a quadratic polynomial with coefficients
in ℚ.

Thus, for example, (1 +
√

5)/2 is a quadratic irrational. Recall that

1 +
√

5
2 = [1, 1, 1, . . .].

The continued fraction of
√

2 is [1, 2, 2, 2, 2, 2, . . .], and the continued frac-
tion of

√
389 is

[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, . . .].

1.1 Periodic Continued Fractions
Definition (Periodic Continued Fraction). A periodic continued fraction is
a continued fraction [𝑎0, 𝑎1, . . . , 𝑎𝑛, . . .] such that

𝑎𝑛 = 𝑎𝑛+ℎ

for some fixed positive integer ℎ and all sufficiently large 𝑛. We call the min-
imal such ℎ the period of the continued fraction.

Example 1. Consider the periodic continued fraction [1, 2, 1, 2, . . .] = [1, 2].
What does it converge to? We have

[1, 2] = 1 + 1

2 + 1

1 + 1

2 + 1
1 + · · ·

,
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so if 𝛼 = [1, 2] then

𝛼 = 1 + 1

2 + 1
𝛼

= 1 + 1
2𝛼 + 1

𝛼

= 1 + 𝛼

2𝛼 + 1 =
3𝛼 + 1
2𝛼 + 1

Thus 2𝛼2 − 2𝛼 − 1 = 0, so

𝛼 =
1 +

√
3

2 .

1.2 Continued Fractions of Algebraic Numbers of Higher
Degree

Definition (Algebraic Number). An algebraic number is a root of a polyno-
mial 𝑓 ∈ ℚ[𝑥].

2 Recognizing Rational Numbers
Suppose that somehow you can compute approximations to some rational
number, and want to figure what the rational number probably is. Com-
puting the approximation to high enough precision to find a period in the
decimal expansion is not a good approach, because the period can be huge
(see below). A much better approach is to compute the simple continued
fraction of the approximation, and truncate it before a large partial quo-
tient 𝑎𝑛, then compute the value of the truncated continued fraction. This
results in a rational number that has a relatively small numerator and de-
nominator, and is close to the approximation of the rational number, since
the tail end of the continued fraction is at most 1/𝑎𝑛.

We begin with a contrived example, which illustrates how to recognize
a rational number. Let

𝑥 = 9495/3847 = 2.46815700545879906420587470756433584611385 . . . .

The continued fraction of the truncation 2.468157005458799064 is

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 328210621945, 2, 1, 1, 1, . . .]

We have
[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1] = 9495

3847 .
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Notice that no repetition is evident in the digits of 𝑥 given above, though
we know that the decimal expansion of 𝑥 must be eventually periodic, since
all decimal expansions of rational numbers are eventually periodic. In fact,
the length of the period of the decimal expansion of 1/3847 is 3846, which
is the order of 10 modulo 3847

For example, suppose 𝑓 = 3847𝑥2−14808904𝑥+36527265. To apply New-
ton’s method, let 𝑥0 be a guess for a root of 𝑓 . Iterate using the recurrence

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

.

Choosing 𝑥0 = 0, approximations of the first two iterates are

𝑥1 = 2.466574501394566404103909378,

and
𝑥2 = 2.468157004807401923043166846.

The continued fraction of the approximations 𝑥1 and 𝑥2 are

[2, 2, 6, 1, 47, 2, 1, 4, 3, 1, 5, 8, 2, 3]

and
[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 103, 8, 1, 2, 3, . . .].

Truncating the continued fraction of 𝑥2 before 103 gives

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1],

which evaluates to 9495/3847, which is a rational root of 𝑓 .

3 Sums of Two Squares
Theorem. A positive integer 𝑛 is a sum of two squares if and only if all
prime factors of 𝑝 | 𝑛 such that 𝑝 ≡ 3 (mod 4) have even exponent in the
prime factorization of 𝑛.

We first consider some examples. Notice that 5 = 12 + 22 is a sum of
two squares, but 7 is not a sum of two squares. Since 2001 is divisible by
3 (because 2 + 1 is divisible by 3), but not by 9 (since 2 + 1 is not), Theorem
implies that 2001 is not a sum of two squares. The theorem also implies
that 2 · 34 · 5 · 72 · 13 is a sum of two squares.
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Definition (Primitive). A representation 𝑛 = 𝑥2 + 𝑦2 is primitive if 𝑥 and 𝑦

are coprime.

Lemma. If 𝑛 is divisible by a prime 𝑝 ≡ 3 (mod 4), then 𝑛 has no primitive
representations.

Proof. Suppose 𝑛 has a primitive representation, 𝑛 = 𝑥2 + 𝑦2, and let 𝑝 be
any prime factor of 𝑛. Then

𝑝 | 𝑥2 + 𝑦2 and gcd(𝑥, 𝑦) = 1,

so 𝑝 ∤ 𝑥 and 𝑝 ∤ 𝑦. Since ℤ/𝑝ℤ is a field, we may divide by 𝑦2 in the equation
𝑥2 + 𝑦2 ≡ 0 (mod 𝑝) to see that (𝑥/𝑦)2 ≡ −1 (mod 𝑝). Thus the Legendre
symbol

(
−1
𝑝

)
equals +1. However, by Proposition,(

−1
𝑝

)
= (−1) (𝑝−1)/2

so
(
−1
𝑝

)
= 1 if and only if (𝑝−1)/2 is even, which is to say 𝑝 ≡ 1 (mod 4). □

Lemma. If 𝑥 ∈ ℝ and 𝑛 ∈ ℕ, then there is a fraction 𝑎

𝑏
in lowest terms such

that 0 < 𝑏 ≤ 𝑛 and ���𝑥 − 𝑎

𝑏

��� ≤ 1
𝑏(𝑛 + 1) .

Proof. Consider the continued fraction [𝑎0, 𝑎1, . . .] of 𝑥. for each 𝑚����𝑥 − 𝑝𝑚

𝑞𝑚

���� < 1
𝑞𝑚 · 𝑞𝑚+1

.

Since 𝑞𝑚+1 ≥ 𝑞𝑚 + 1 and 𝑞0 = 1, either there exists an 𝑚 such that 𝑞𝑚 ≤ 𝑛 <

𝑞𝑚+1, or the continued fraction expansion of 𝑥 is finite and 𝑛 is larger than
the denominator of the rational number 𝑥, in which case we take 𝑎

𝑏
= 𝑥 and

are done. In the first case,����𝑥 − 𝑝𝑚

𝑞𝑚

���� < 1
𝑞𝑚 · 𝑞𝑚+1

≤ 1
𝑞𝑚 · (𝑛 + 1) ,

so 𝑎

𝑏
=

𝑝𝑚

𝑞𝑚
satisfies the conclusion of the lemma. □
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